自旋1多体系统中量子相干性和量子临界性的鲁棒性

Q2 Physics and Astronomy
Wajid Joyia , Khalid Khan , Asif Ilyas , M.A. Khan
{"title":"自旋1多体系统中量子相干性和量子临界性的鲁棒性","authors":"Wajid Joyia ,&nbsp;Khalid Khan ,&nbsp;Asif Ilyas ,&nbsp;M.A. Khan","doi":"10.1016/j.physo.2023.100149","DOIUrl":null,"url":null,"abstract":"<div><p>The tripartite quantum coherence for spin-<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and bipartite quantum coherence for spin-1 many-body systems are studied with the quantum renormalization group method to investigate the quantum criticality behaviour of both systems. We find both spin-<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and spin-1 systems exhibit quantum criticality behaviour after different number of iterations. However, the bipartite quantum coherence for spin-1 system reaches the quantum criticality behaviour in lesser number of iterations than the tripartite quantum coherence for spin-<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> system. The quantum criticality behaviour of both systems is also investigated through non-analytic and the scaling behaviour of quantum coherence. Additionally, quantum correlations and quantum phase transition are observed to be more vigorous with higher spin comparatively to the number of parties (i.e., bipartite, tripartite, multipartite) involved in a quantum correlations.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"15 ","pages":"Article 100149"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness of quantum coherence and quantum criticality in spin-1 many-body system\",\"authors\":\"Wajid Joyia ,&nbsp;Khalid Khan ,&nbsp;Asif Ilyas ,&nbsp;M.A. Khan\",\"doi\":\"10.1016/j.physo.2023.100149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The tripartite quantum coherence for spin-<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and bipartite quantum coherence for spin-1 many-body systems are studied with the quantum renormalization group method to investigate the quantum criticality behaviour of both systems. We find both spin-<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and spin-1 systems exhibit quantum criticality behaviour after different number of iterations. However, the bipartite quantum coherence for spin-1 system reaches the quantum criticality behaviour in lesser number of iterations than the tripartite quantum coherence for spin-<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> system. The quantum criticality behaviour of both systems is also investigated through non-analytic and the scaling behaviour of quantum coherence. Additionally, quantum correlations and quantum phase transition are observed to be more vigorous with higher spin comparatively to the number of parties (i.e., bipartite, tripartite, multipartite) involved in a quantum correlations.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"15 \",\"pages\":\"Article 100149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032623000145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032623000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

利用量子重整化群方法研究了自旋-12多体系统的三部量子相干性和自旋-1多体系统的二部量子相干性,探讨了这两个系统的量子临界行为。我们发现自旋-12和自旋-1系统在不同的迭代次数后都表现出量子临界行为。然而,自旋-1系统的二部量子相干性比自旋-12系统的三部量子相干性在更少的迭代次数下达到量子临界行为。通过量子相干的非解析行为和标度行为研究了这两个系统的量子临界行为。此外,量子相关和量子相变被观察到具有更高的自旋,相对于量子相关中涉及的各方(即二方,三方,多方)的数量更有活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness of quantum coherence and quantum criticality in spin-1 many-body system

The tripartite quantum coherence for spin-12 and bipartite quantum coherence for spin-1 many-body systems are studied with the quantum renormalization group method to investigate the quantum criticality behaviour of both systems. We find both spin-12 and spin-1 systems exhibit quantum criticality behaviour after different number of iterations. However, the bipartite quantum coherence for spin-1 system reaches the quantum criticality behaviour in lesser number of iterations than the tripartite quantum coherence for spin-12 system. The quantum criticality behaviour of both systems is also investigated through non-analytic and the scaling behaviour of quantum coherence. Additionally, quantum correlations and quantum phase transition are observed to be more vigorous with higher spin comparatively to the number of parties (i.e., bipartite, tripartite, multipartite) involved in a quantum correlations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信