{"title":"约化模和协约模的应用","authors":"D. Ssevviiri","doi":"10.24330/ieja.1299587","DOIUrl":null,"url":null,"abstract":"This is the first in a series of papers highlighting the applications of reduced and coreduced modules. Let $R$ be a commutative unital ring and $I$ be an ideal of $R$. We show that $I$-reduced $R$-modules and $I$-coreduced $R$-modules provide a setting in which the Matlis-Greenless-May (MGM) Equivalence and the Greenless-May (GM) Duality hold. These two notions have been hitherto only known to exist in the derived category setting. We realise the $I$-torsion and the $I$-adic completion functors as representable functors and under suitable conditions compute natural transformations between them and other functors.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Applications of reduced and coreduced modules I\",\"authors\":\"D. Ssevviiri\",\"doi\":\"10.24330/ieja.1299587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the first in a series of papers highlighting the applications of reduced and coreduced modules. Let $R$ be a commutative unital ring and $I$ be an ideal of $R$. We show that $I$-reduced $R$-modules and $I$-coreduced $R$-modules provide a setting in which the Matlis-Greenless-May (MGM) Equivalence and the Greenless-May (GM) Duality hold. These two notions have been hitherto only known to exist in the derived category setting. We realise the $I$-torsion and the $I$-adic completion functors as representable functors and under suitable conditions compute natural transformations between them and other functors.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1299587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1299587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
This is the first in a series of papers highlighting the applications of reduced and coreduced modules. Let $R$ be a commutative unital ring and $I$ be an ideal of $R$. We show that $I$-reduced $R$-modules and $I$-coreduced $R$-modules provide a setting in which the Matlis-Greenless-May (MGM) Equivalence and the Greenless-May (GM) Duality hold. These two notions have been hitherto only known to exist in the derived category setting. We realise the $I$-torsion and the $I$-adic completion functors as representable functors and under suitable conditions compute natural transformations between them and other functors.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.