{"title":"减轻运动损伤的决策支持系统","authors":"Kyle D. Peterson, L. Evans","doi":"10.2478/ijcss-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of the present study was to demonstrate an inductive approach for dynamically modelling sport-related injuries with a probabilistic graphical model. Dynamic Bayesian Network (DBN), a well-known machine learning method, was employed to illustrate how sport practitioners could utilize a simulatory environment to augment the training management process. 23 University of Iowa female student-athletes (from 3 undisclosed teams) were regularly monitored with common athlete monitoring technologies, throughout the 2016 competitive season, as a part of their routine health and well-being surveillance. The presented work investigated the ability of these technologies to model injury occurrences in a dynamic, temporal dimension. To verify validity, DBN model accuracy was compared with the performance of its static counterpart. After 3 rounds of 5-fold cross-validation, resultant DBN mean accuracy surpassed naïve baseline threshold whereas static Bayesian network did not achieve baseline accuracy. Conclusive DBN suggested subjectively-reported stress two days prior, subjective internal perceived exertions one day prior, direct current potential and sympathetic tone the day of, as the most impactful towards injury manifestation.","PeriodicalId":38466,"journal":{"name":"International Journal of Computer Science in Sport","volume":"18 1","pages":"45 - 63"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Decision Support System for Mitigating Athletic Injuries\",\"authors\":\"Kyle D. Peterson, L. Evans\",\"doi\":\"10.2478/ijcss-2019-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of the present study was to demonstrate an inductive approach for dynamically modelling sport-related injuries with a probabilistic graphical model. Dynamic Bayesian Network (DBN), a well-known machine learning method, was employed to illustrate how sport practitioners could utilize a simulatory environment to augment the training management process. 23 University of Iowa female student-athletes (from 3 undisclosed teams) were regularly monitored with common athlete monitoring technologies, throughout the 2016 competitive season, as a part of their routine health and well-being surveillance. The presented work investigated the ability of these technologies to model injury occurrences in a dynamic, temporal dimension. To verify validity, DBN model accuracy was compared with the performance of its static counterpart. After 3 rounds of 5-fold cross-validation, resultant DBN mean accuracy surpassed naïve baseline threshold whereas static Bayesian network did not achieve baseline accuracy. Conclusive DBN suggested subjectively-reported stress two days prior, subjective internal perceived exertions one day prior, direct current potential and sympathetic tone the day of, as the most impactful towards injury manifestation.\",\"PeriodicalId\":38466,\"journal\":{\"name\":\"International Journal of Computer Science in Sport\",\"volume\":\"18 1\",\"pages\":\"45 - 63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Science in Sport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijcss-2019-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science in Sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijcss-2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Decision Support System for Mitigating Athletic Injuries
Abstract The purpose of the present study was to demonstrate an inductive approach for dynamically modelling sport-related injuries with a probabilistic graphical model. Dynamic Bayesian Network (DBN), a well-known machine learning method, was employed to illustrate how sport practitioners could utilize a simulatory environment to augment the training management process. 23 University of Iowa female student-athletes (from 3 undisclosed teams) were regularly monitored with common athlete monitoring technologies, throughout the 2016 competitive season, as a part of their routine health and well-being surveillance. The presented work investigated the ability of these technologies to model injury occurrences in a dynamic, temporal dimension. To verify validity, DBN model accuracy was compared with the performance of its static counterpart. After 3 rounds of 5-fold cross-validation, resultant DBN mean accuracy surpassed naïve baseline threshold whereas static Bayesian network did not achieve baseline accuracy. Conclusive DBN suggested subjectively-reported stress two days prior, subjective internal perceived exertions one day prior, direct current potential and sympathetic tone the day of, as the most impactful towards injury manifestation.