{"title":"云环境下基于多目标二元鲸优化的虚拟机分配","authors":"Ankit Srivastava, Narander Kumar","doi":"10.4018/ijsir.317111","DOIUrl":null,"url":null,"abstract":"With the rising demands for the services provided by cloud computing, virtual machine allocation (VMA) has become a tedious task due to the dynamic nature of the cloud. Millions of virtual machines (VMs) are allocated and de-allocated at every instant, so an efficient VMA has been a significant concern to enhance resource utilization and depreciate its wastage. Encouraged by the prodigious performance of the nature-inspired algorithm, the binary whale optimization approach has been eventuated to get to grips with the VMA issue with the focus on minimizing the resource waste and volume of servers working actively. The deliberate approach's accomplishment is assessed against the literature's well-known algorithms for VMA issues. The comparison results showed that the least resource wastage fitness of 15.68, minimum active servers of 216, and effective CPU and memory utilization of 88.31% and 88.79%, respectively, have been achieved.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective Binary Whale Optimization-Based Virtual Machine Allocation in Cloud Environments\",\"authors\":\"Ankit Srivastava, Narander Kumar\",\"doi\":\"10.4018/ijsir.317111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rising demands for the services provided by cloud computing, virtual machine allocation (VMA) has become a tedious task due to the dynamic nature of the cloud. Millions of virtual machines (VMs) are allocated and de-allocated at every instant, so an efficient VMA has been a significant concern to enhance resource utilization and depreciate its wastage. Encouraged by the prodigious performance of the nature-inspired algorithm, the binary whale optimization approach has been eventuated to get to grips with the VMA issue with the focus on minimizing the resource waste and volume of servers working actively. The deliberate approach's accomplishment is assessed against the literature's well-known algorithms for VMA issues. The comparison results showed that the least resource wastage fitness of 15.68, minimum active servers of 216, and effective CPU and memory utilization of 88.31% and 88.79%, respectively, have been achieved.\",\"PeriodicalId\":44265,\"journal\":{\"name\":\"International Journal of Swarm Intelligence Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Swarm Intelligence Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsir.317111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.317111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-Objective Binary Whale Optimization-Based Virtual Machine Allocation in Cloud Environments
With the rising demands for the services provided by cloud computing, virtual machine allocation (VMA) has become a tedious task due to the dynamic nature of the cloud. Millions of virtual machines (VMs) are allocated and de-allocated at every instant, so an efficient VMA has been a significant concern to enhance resource utilization and depreciate its wastage. Encouraged by the prodigious performance of the nature-inspired algorithm, the binary whale optimization approach has been eventuated to get to grips with the VMA issue with the focus on minimizing the resource waste and volume of servers working actively. The deliberate approach's accomplishment is assessed against the literature's well-known algorithms for VMA issues. The comparison results showed that the least resource wastage fitness of 15.68, minimum active servers of 216, and effective CPU and memory utilization of 88.31% and 88.79%, respectively, have been achieved.
期刊介绍:
The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.