{"title":"混合图的关联矩阵与线图","authors":"Mohammad Abudayah, O. Alomari, T. Sander","doi":"10.1515/spma-2022-0176","DOIUrl":null,"url":null,"abstract":"Abstract In the theory of line graphs of undirected graphs, there exists an important theorem linking the incidence matrix of the root graph to the adjacency matrix of its line graph. For directed or mixed graphs, however, there exists no analogous result. The goal of this article is to present aligned definitions of the adjacency matrix, the incidence matrix, and line graph of a mixed graph such that the mentioned theorem is valid for mixed graphs.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incidence matrices and line graphs of mixed graphs\",\"authors\":\"Mohammad Abudayah, O. Alomari, T. Sander\",\"doi\":\"10.1515/spma-2022-0176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the theory of line graphs of undirected graphs, there exists an important theorem linking the incidence matrix of the root graph to the adjacency matrix of its line graph. For directed or mixed graphs, however, there exists no analogous result. The goal of this article is to present aligned definitions of the adjacency matrix, the incidence matrix, and line graph of a mixed graph such that the mentioned theorem is valid for mixed graphs.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2022-0176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Incidence matrices and line graphs of mixed graphs
Abstract In the theory of line graphs of undirected graphs, there exists an important theorem linking the incidence matrix of the root graph to the adjacency matrix of its line graph. For directed or mixed graphs, however, there exists no analogous result. The goal of this article is to present aligned definitions of the adjacency matrix, the incidence matrix, and line graph of a mixed graph such that the mentioned theorem is valid for mixed graphs.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.