牛顿加热下非牛顿纳米流体通过截锥传输现象的数学分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nagendra Nallagundla, Ch. Amanulla, M. Reddy
{"title":"牛顿加热下非牛顿纳米流体通过截锥传输现象的数学分析","authors":"Nagendra Nallagundla, Ch. Amanulla, M. Reddy","doi":"10.3329/JNAME.V15I1.29966","DOIUrl":null,"url":null,"abstract":"In the present study, we analyze the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid past a truncated cone surface with Biot Number effect is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer Biot Number effect. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via. Appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit type. The influences of the emerging parameters i.e. Casson fluid parameter (?), Brownian motion parameter (Nb) and thermophoresis parameter (Nt), Lewis number (Le), Buoyancy ratio parameter (N ), Prandtl number (Pr) and Biot number (Bi) on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length.  Validation of solutions with a Nakamura tri-diagonal method has been included. The study is relevant to enrobing processes for electric-conductive nano-materials of potential use in aerospace and other industries.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V15I1.29966","citationCount":"12","resultStr":"{\"title\":\"Mathematical analysis of non-Newtonian nanofluid transport phenomena past a truncated cone with Newtonian heating\",\"authors\":\"Nagendra Nallagundla, Ch. Amanulla, M. Reddy\",\"doi\":\"10.3329/JNAME.V15I1.29966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, we analyze the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid past a truncated cone surface with Biot Number effect is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer Biot Number effect. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via. Appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit type. The influences of the emerging parameters i.e. Casson fluid parameter (?), Brownian motion parameter (Nb) and thermophoresis parameter (Nt), Lewis number (Le), Buoyancy ratio parameter (N ), Prandtl number (Pr) and Biot number (Bi) on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length.  Validation of solutions with a Nakamura tri-diagonal method has been included. The study is relevant to enrobing processes for electric-conductive nano-materials of potential use in aerospace and other industries.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/JNAME.V15I1.29966\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V15I1.29966\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V15I1.29966","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

在本研究中,我们分析了Casson纳米流体通过截锥表面的外边界层流动中的热、动量和质量(物种)传递,并从理论上研究了Biot数效应。布朗运动和热泳效应在存在热和纳米颗粒传质生物数效应的情况下被纳入模型中。通过将控制偏微分方程转化为由动量、能量和浓度方程组成的高度非线性、耦合、多阶非相似偏微分方程。适当的非相似性变换。这些变换后的守恒方程在适当的边界条件下用隐式二阶精确有限差分法求解。图中详细说明了新兴参数,即Casson流体参数(?)、布朗运动参数(Nb)和热泳参数(Nt)、Lewis数(Le)、浮力比参数(N)、普朗特数(Pr)和毕奥数(Bi)对速度、温度和纳米粒子浓度分布的影响。已包括使用Nakamura三对角线方法验证解决方案。该研究与在航空航天和其他行业具有潜在用途的导电纳米材料的包覆工艺有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical analysis of non-Newtonian nanofluid transport phenomena past a truncated cone with Newtonian heating
In the present study, we analyze the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid past a truncated cone surface with Biot Number effect is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer Biot Number effect. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via. Appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit type. The influences of the emerging parameters i.e. Casson fluid parameter (?), Brownian motion parameter (Nb) and thermophoresis parameter (Nt), Lewis number (Le), Buoyancy ratio parameter (N ), Prandtl number (Pr) and Biot number (Bi) on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length.  Validation of solutions with a Nakamura tri-diagonal method has been included. The study is relevant to enrobing processes for electric-conductive nano-materials of potential use in aerospace and other industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信