Srivatsa Thimmaiah, Tabish Wahidi, A. Yadav, A. Mahalingam
{"title":"以加热器、换热器和等温壁为热源的超临界CO2基NCLS稳定性的数值评估","authors":"Srivatsa Thimmaiah, Tabish Wahidi, A. Yadav, A. Mahalingam","doi":"10.18186/thermal.1285268","DOIUrl":null,"url":null,"abstract":"Three-dimensional numerical analysis is presented in this study to assess the transient and stability behaviour of supercritical CO2 (sCO2) based NCLs configured with three different types of heat sources, i.e., heater, a hot heat exchanger (HHX) and isothermal wall (ISO) at the source, and a cold heat exchanger (CHX) at the sink in all three NCLs. Unsteady threedimensional conservation equations (mass, momentum and energy equations) are solved to assess the transient and stability behaviour of sCO2 mass flow rate, temperature and velocity as a function of time. Further, the effect of pressure on sCO2 mass flow rate is also assessed to compare the loops performance. Performance of the loop has been studied for various heat inputs at the source by keeping constant mass flow rate and temperature at the sink. It is observed that for any boundary condition at the source, the loop experiences some initial disturbances or instabilities before reaching the steady-state. However, the time needed to attain a steady-state varies with the nature of heat input employed at the source. Results show a higher magnitude of instabilities in the Heater-CHX loop than HHX-CHX and ISO-CHX loops, and these instabilities mitigate at a faster rate in the ISO- CHX loop at all levels of heat input and operating pressure of the loop. It is also observed that as loop fluid operating pressure increases, the instability of the system decreases and the loop fluid mass flow rate increases. Further, the Nusselt number in the Heater-CHX loop is more than other loops because of its high turbulent kinetic energy. The findings of this study are validated with the published experimental and numerical data and found a good agreement.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical assessment of stability behaviour in supercritical CO2 based NCLS configured with heater, heat exchanger and isothermal wall as heat source\",\"authors\":\"Srivatsa Thimmaiah, Tabish Wahidi, A. Yadav, A. Mahalingam\",\"doi\":\"10.18186/thermal.1285268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional numerical analysis is presented in this study to assess the transient and stability behaviour of supercritical CO2 (sCO2) based NCLs configured with three different types of heat sources, i.e., heater, a hot heat exchanger (HHX) and isothermal wall (ISO) at the source, and a cold heat exchanger (CHX) at the sink in all three NCLs. Unsteady threedimensional conservation equations (mass, momentum and energy equations) are solved to assess the transient and stability behaviour of sCO2 mass flow rate, temperature and velocity as a function of time. Further, the effect of pressure on sCO2 mass flow rate is also assessed to compare the loops performance. Performance of the loop has been studied for various heat inputs at the source by keeping constant mass flow rate and temperature at the sink. It is observed that for any boundary condition at the source, the loop experiences some initial disturbances or instabilities before reaching the steady-state. However, the time needed to attain a steady-state varies with the nature of heat input employed at the source. Results show a higher magnitude of instabilities in the Heater-CHX loop than HHX-CHX and ISO-CHX loops, and these instabilities mitigate at a faster rate in the ISO- CHX loop at all levels of heat input and operating pressure of the loop. It is also observed that as loop fluid operating pressure increases, the instability of the system decreases and the loop fluid mass flow rate increases. Further, the Nusselt number in the Heater-CHX loop is more than other loops because of its high turbulent kinetic energy. The findings of this study are validated with the published experimental and numerical data and found a good agreement.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1285268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1285268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Numerical assessment of stability behaviour in supercritical CO2 based NCLS configured with heater, heat exchanger and isothermal wall as heat source
Three-dimensional numerical analysis is presented in this study to assess the transient and stability behaviour of supercritical CO2 (sCO2) based NCLs configured with three different types of heat sources, i.e., heater, a hot heat exchanger (HHX) and isothermal wall (ISO) at the source, and a cold heat exchanger (CHX) at the sink in all three NCLs. Unsteady threedimensional conservation equations (mass, momentum and energy equations) are solved to assess the transient and stability behaviour of sCO2 mass flow rate, temperature and velocity as a function of time. Further, the effect of pressure on sCO2 mass flow rate is also assessed to compare the loops performance. Performance of the loop has been studied for various heat inputs at the source by keeping constant mass flow rate and temperature at the sink. It is observed that for any boundary condition at the source, the loop experiences some initial disturbances or instabilities before reaching the steady-state. However, the time needed to attain a steady-state varies with the nature of heat input employed at the source. Results show a higher magnitude of instabilities in the Heater-CHX loop than HHX-CHX and ISO-CHX loops, and these instabilities mitigate at a faster rate in the ISO- CHX loop at all levels of heat input and operating pressure of the loop. It is also observed that as loop fluid operating pressure increases, the instability of the system decreases and the loop fluid mass flow rate increases. Further, the Nusselt number in the Heater-CHX loop is more than other loops because of its high turbulent kinetic energy. The findings of this study are validated with the published experimental and numerical data and found a good agreement.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.