以加热器、换热器和等温壁为热源的超临界CO2基NCLS稳定性的数值评估

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Srivatsa Thimmaiah, Tabish Wahidi, A. Yadav, A. Mahalingam
{"title":"以加热器、换热器和等温壁为热源的超临界CO2基NCLS稳定性的数值评估","authors":"Srivatsa Thimmaiah, Tabish Wahidi, A. Yadav, A. Mahalingam","doi":"10.18186/thermal.1285268","DOIUrl":null,"url":null,"abstract":"Three-dimensional numerical analysis is presented in this study to assess the transient and stability behaviour of supercritical CO2 (sCO2) based NCLs configured with three different types of heat sources, i.e., heater, a hot heat exchanger (HHX) and isothermal wall (ISO) at the source, and a cold heat exchanger (CHX) at the sink in all three NCLs. Unsteady threedimensional conservation equations (mass, momentum and energy equations) are solved to assess the transient and stability behaviour of sCO2 mass flow rate, temperature and velocity as a function of time. Further, the effect of pressure on sCO2 mass flow rate is also assessed to compare the loops performance. Performance of the loop has been studied for various heat inputs at the source by keeping constant mass flow rate and temperature at the sink. It is observed that for any boundary condition at the source, the loop experiences some initial disturbances or instabilities before reaching the steady-state. However, the time needed to attain a steady-state varies with the nature of heat input employed at the source. Results show a higher magnitude of instabilities in the Heater-CHX loop than HHX-CHX and ISO-CHX loops, and these instabilities mitigate at a faster rate in the ISO- CHX loop at all levels of heat input and operating pressure of the loop. It is also observed that as loop fluid operating pressure increases, the instability of the system decreases and the loop fluid mass flow rate increases. Further, the Nusselt number in the Heater-CHX loop is more than other loops because of its high turbulent kinetic energy. The findings of this study are validated with the published experimental and numerical data and found a good agreement.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical assessment of stability behaviour in supercritical CO2 based NCLS configured with heater, heat exchanger and isothermal wall as heat source\",\"authors\":\"Srivatsa Thimmaiah, Tabish Wahidi, A. Yadav, A. Mahalingam\",\"doi\":\"10.18186/thermal.1285268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional numerical analysis is presented in this study to assess the transient and stability behaviour of supercritical CO2 (sCO2) based NCLs configured with three different types of heat sources, i.e., heater, a hot heat exchanger (HHX) and isothermal wall (ISO) at the source, and a cold heat exchanger (CHX) at the sink in all three NCLs. Unsteady threedimensional conservation equations (mass, momentum and energy equations) are solved to assess the transient and stability behaviour of sCO2 mass flow rate, temperature and velocity as a function of time. Further, the effect of pressure on sCO2 mass flow rate is also assessed to compare the loops performance. Performance of the loop has been studied for various heat inputs at the source by keeping constant mass flow rate and temperature at the sink. It is observed that for any boundary condition at the source, the loop experiences some initial disturbances or instabilities before reaching the steady-state. However, the time needed to attain a steady-state varies with the nature of heat input employed at the source. Results show a higher magnitude of instabilities in the Heater-CHX loop than HHX-CHX and ISO-CHX loops, and these instabilities mitigate at a faster rate in the ISO- CHX loop at all levels of heat input and operating pressure of the loop. It is also observed that as loop fluid operating pressure increases, the instability of the system decreases and the loop fluid mass flow rate increases. Further, the Nusselt number in the Heater-CHX loop is more than other loops because of its high turbulent kinetic energy. The findings of this study are validated with the published experimental and numerical data and found a good agreement.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1285268\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1285268","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究进行了三维数值分析,以评估基于超临界CO2(sCO2)的NCL的瞬态和稳定性行为,该NCL配置有三种不同类型的热源,即热源处的加热器、热热交换器(HHX)和等温壁(ISO),以及散热器处的冷热交换器(CHX)。求解非定常三维守恒方程(质量、动量和能量方程),以评估sCO2质量流速、温度和速度作为时间函数的瞬态和稳定性行为。此外,还评估了压力对sCO2质量流速的影响,以比较环路性能。通过在散热器处保持恒定的质量流速和温度,研究了回路在源处的各种热输入下的性能。观察到,对于源处的任何边界条件,回路在达到稳态之前都会经历一些初始扰动或不稳定性。然而,达到稳态所需的时间随着热源处使用的热输入的性质而变化。结果显示,与HHX-CHX和ISO-CHX回路相比,加热器CHX回路中的不稳定性更高,并且在回路的所有热输入和操作压力水平下,这些不稳定性在ISO-CHX回路以更快的速度减轻。还观察到,随着回路流体工作压力的增加,系统的不稳定性降低,回路流体质量流量增加。此外,加热器CHX回路中的努塞尔数由于其高湍流动能而比其他回路多。这项研究的结果与已发表的实验和数值数据相验证,并发现了良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical assessment of stability behaviour in supercritical CO2 based NCLS configured with heater, heat exchanger and isothermal wall as heat source
Three-dimensional numerical analysis is presented in this study to assess the transient and stability behaviour of supercritical CO2 (sCO2) based NCLs configured with three different types of heat sources, i.e., heater, a hot heat exchanger (HHX) and isothermal wall (ISO) at the source, and a cold heat exchanger (CHX) at the sink in all three NCLs. Unsteady threedimensional conservation equations (mass, momentum and energy equations) are solved to assess the transient and stability behaviour of sCO2 mass flow rate, temperature and velocity as a function of time. Further, the effect of pressure on sCO2 mass flow rate is also assessed to compare the loops performance. Performance of the loop has been studied for various heat inputs at the source by keeping constant mass flow rate and temperature at the sink. It is observed that for any boundary condition at the source, the loop experiences some initial disturbances or instabilities before reaching the steady-state. However, the time needed to attain a steady-state varies with the nature of heat input employed at the source. Results show a higher magnitude of instabilities in the Heater-CHX loop than HHX-CHX and ISO-CHX loops, and these instabilities mitigate at a faster rate in the ISO- CHX loop at all levels of heat input and operating pressure of the loop. It is also observed that as loop fluid operating pressure increases, the instability of the system decreases and the loop fluid mass flow rate increases. Further, the Nusselt number in the Heater-CHX loop is more than other loops because of its high turbulent kinetic energy. The findings of this study are validated with the published experimental and numerical data and found a good agreement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信