{"title":"广义抛物型hardy - hsamnon方程的存在性、爆破性、自相似性和大时渐近性","authors":"Gael Diebou Yomgne","doi":"10.57262/die035-0102-57","DOIUrl":null,"url":null,"abstract":"This paper deals with the Cauchy problem for the Hardy-Hénon equation (and its fractional analogue). Local well-posedness for initial data in the class of continuous functions with slow decay at infinity is investigated. Small data (in critical weak-Lebesgue space) global well-posedness is obtained in Cb([0,∞); L c(R)). As a direct consequence, global existence for data in strong critical Lebesgue Lc (R) follows under a smallness condition while uniqueness is unconditional. Besides, we prove the existence of self-similar solutions and examine the long time behavior of globally defined solutions. The zero solution u ≡ 0 is shown to be asymptotically stable in Lc (R) – it is the only self-similar solution which is initially small in Lc (R). Moreover, blow-up results are obtained under mild assumptions on the initial data and the corresponding Fujita critical exponent is found.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the generalized parabolic Hardy-Hénon equation: Existence, blow-up, self-similarity and large-time asymptotic behavior\",\"authors\":\"Gael Diebou Yomgne\",\"doi\":\"10.57262/die035-0102-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the Cauchy problem for the Hardy-Hénon equation (and its fractional analogue). Local well-posedness for initial data in the class of continuous functions with slow decay at infinity is investigated. Small data (in critical weak-Lebesgue space) global well-posedness is obtained in Cb([0,∞); L c(R)). As a direct consequence, global existence for data in strong critical Lebesgue Lc (R) follows under a smallness condition while uniqueness is unconditional. Besides, we prove the existence of self-similar solutions and examine the long time behavior of globally defined solutions. The zero solution u ≡ 0 is shown to be asymptotically stable in Lc (R) – it is the only self-similar solution which is initially small in Lc (R). Moreover, blow-up results are obtained under mild assumptions on the initial data and the corresponding Fujita critical exponent is found.\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die035-0102-57\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-0102-57","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
本文讨论了hardy - hsamnon方程的柯西问题(及其分数阶类比)。研究了一类在无穷远处缓慢衰减的连续函数的初始数据的局部适定性。在Cb([0,∞)上得到了小数据(临界弱- lebesgue空间)的全局适定性;L c (R))。其直接结果是,强临界Lebesgue Lc (R)中的数据在一个小条件下具有全局存在性,而唯一性是无条件的。此外,我们证明了自相似解的存在性,并检验了全局定义解的长时间行为。证明了零解u≡0在Lc (R)中是渐近稳定的——它是Lc (R)中唯一初始较小的自相似解。此外,在初始数据的温和假设下得到了爆破结果,并找到了相应的Fujita临界指数。
On the generalized parabolic Hardy-Hénon equation: Existence, blow-up, self-similarity and large-time asymptotic behavior
This paper deals with the Cauchy problem for the Hardy-Hénon equation (and its fractional analogue). Local well-posedness for initial data in the class of continuous functions with slow decay at infinity is investigated. Small data (in critical weak-Lebesgue space) global well-posedness is obtained in Cb([0,∞); L c(R)). As a direct consequence, global existence for data in strong critical Lebesgue Lc (R) follows under a smallness condition while uniqueness is unconditional. Besides, we prove the existence of self-similar solutions and examine the long time behavior of globally defined solutions. The zero solution u ≡ 0 is shown to be asymptotically stable in Lc (R) – it is the only self-similar solution which is initially small in Lc (R). Moreover, blow-up results are obtained under mild assumptions on the initial data and the corresponding Fujita critical exponent is found.
期刊介绍:
Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.