论爆破卸荷板在顶盖中的效率

Q3 Engineering
V. Gorev, Evgeniya Chelekova, N.V. Leshchev
{"title":"论爆破卸荷板在顶盖中的效率","authors":"V. Gorev, Evgeniya Chelekova, N.V. Leshchev","doi":"10.24000/0409-2961-2023-5-7-14","DOIUrl":null,"url":null,"abstract":"The dynamics of the development of an internal explosion is studied considering the action of blast relief panels. The time spent on the exit of the blast relief panel from the opening, as well as the effect of gravity, are considered. The processes are investigated from the moment the blast relief panel leaves the opening and until it is fully opened. A model is formed considering the initial speed of the blast relief panel at the exit from the opening. The model is limited to considering the pressures, at which it is assumed that the degree of expansion of gases during combustion is unchanged, and to determine the rate of gas outflow, the Bernoulli equation for an incompressible liquid is applicable. Dimensionless complexes and parameters characterizing the process under study are established. As a final result, the dependence of the maximum pressure during the opening-up of the opening (the first peak) from the dimensionless complex based on the initial data is proposed. Among them are the characteristics of the blast relief panel, the combustion rate, the geometric shape, and dimensions of the opening. It is concluded that the maximum possible pressure at the first peak does not directly depend on the area of the opening. The rate of pressure relief at the moment of opening-up of the opening is determined by the area of the side space calculated as the product of the perimeter of the opening to the amount of displacement of the blast relief panel. A method is proposed for reducing pressure at the first peak by increasing the number of openings while maintaining the total area for pressure relief, which depends on the bearing capacity of panels. The results obtained allow to establish under what conditions the pressure at the first peak exceeds the pressure at the second one. Thanks to this, it is possible to adjust the explosion resistance of an object by changing the design of a blast relief panel, or by strengthening the load-bearing elements.","PeriodicalId":35650,"journal":{"name":"Bezopasnost'' Truda v Promyshlennosti","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Efficiency of Blast Relief Panels Located in the Cover\",\"authors\":\"V. Gorev, Evgeniya Chelekova, N.V. Leshchev\",\"doi\":\"10.24000/0409-2961-2023-5-7-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of the development of an internal explosion is studied considering the action of blast relief panels. The time spent on the exit of the blast relief panel from the opening, as well as the effect of gravity, are considered. The processes are investigated from the moment the blast relief panel leaves the opening and until it is fully opened. A model is formed considering the initial speed of the blast relief panel at the exit from the opening. The model is limited to considering the pressures, at which it is assumed that the degree of expansion of gases during combustion is unchanged, and to determine the rate of gas outflow, the Bernoulli equation for an incompressible liquid is applicable. Dimensionless complexes and parameters characterizing the process under study are established. As a final result, the dependence of the maximum pressure during the opening-up of the opening (the first peak) from the dimensionless complex based on the initial data is proposed. Among them are the characteristics of the blast relief panel, the combustion rate, the geometric shape, and dimensions of the opening. It is concluded that the maximum possible pressure at the first peak does not directly depend on the area of the opening. The rate of pressure relief at the moment of opening-up of the opening is determined by the area of the side space calculated as the product of the perimeter of the opening to the amount of displacement of the blast relief panel. A method is proposed for reducing pressure at the first peak by increasing the number of openings while maintaining the total area for pressure relief, which depends on the bearing capacity of panels. The results obtained allow to establish under what conditions the pressure at the first peak exceeds the pressure at the second one. Thanks to this, it is possible to adjust the explosion resistance of an object by changing the design of a blast relief panel, or by strengthening the load-bearing elements.\",\"PeriodicalId\":35650,\"journal\":{\"name\":\"Bezopasnost'' Truda v Promyshlennosti\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bezopasnost'' Truda v Promyshlennosti\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24000/0409-2961-2023-5-7-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bezopasnost'' Truda v Promyshlennosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24000/0409-2961-2023-5-7-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

考虑到泄爆板的作用,研究了内部爆炸发展的动力学。考虑了爆破泄压面板从开口出口所花费的时间以及重力的影响。从泄爆面板离开开口的那一刻起,一直到完全打开,都会对这些过程进行调查。建立了一个模型,考虑了泄爆板在开口出口处的初始速度。该模型仅限于考虑压力,在该压力下,假设燃烧过程中气体的膨胀度不变,并且为了确定气体流出速率,适用不可压缩液体的伯努利方程。建立了表征所研究过程的无量纲复合物和参数。最后,基于初始数据,提出了开口打开期间的最大压力(第一个峰值)与无量纲复数的相关性。其中包括防爆板的特性、燃烧率、几何形状和开口尺寸。得出的结论是,在第一峰值处的最大可能压力并不直接取决于开口的面积。开口打开时的泄压率由侧空间面积确定,侧空间面积计算为开口周长与防爆板位移量的乘积。提出了一种方法,通过增加开口数量来降低第一个峰值处的压力,同时保持泄压的总面积,这取决于面板的承载能力。所获得的结果允许确定在什么条件下第一峰值处的压力超过第二峰值处的压强。因此,可以通过改变防爆板的设计或通过加强承载元件来调整物体的防爆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Efficiency of Blast Relief Panels Located in the Cover
The dynamics of the development of an internal explosion is studied considering the action of blast relief panels. The time spent on the exit of the blast relief panel from the opening, as well as the effect of gravity, are considered. The processes are investigated from the moment the blast relief panel leaves the opening and until it is fully opened. A model is formed considering the initial speed of the blast relief panel at the exit from the opening. The model is limited to considering the pressures, at which it is assumed that the degree of expansion of gases during combustion is unchanged, and to determine the rate of gas outflow, the Bernoulli equation for an incompressible liquid is applicable. Dimensionless complexes and parameters characterizing the process under study are established. As a final result, the dependence of the maximum pressure during the opening-up of the opening (the first peak) from the dimensionless complex based on the initial data is proposed. Among them are the characteristics of the blast relief panel, the combustion rate, the geometric shape, and dimensions of the opening. It is concluded that the maximum possible pressure at the first peak does not directly depend on the area of the opening. The rate of pressure relief at the moment of opening-up of the opening is determined by the area of the side space calculated as the product of the perimeter of the opening to the amount of displacement of the blast relief panel. A method is proposed for reducing pressure at the first peak by increasing the number of openings while maintaining the total area for pressure relief, which depends on the bearing capacity of panels. The results obtained allow to establish under what conditions the pressure at the first peak exceeds the pressure at the second one. Thanks to this, it is possible to adjust the explosion resistance of an object by changing the design of a blast relief panel, or by strengthening the load-bearing elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bezopasnost'' Truda v Promyshlennosti
Bezopasnost'' Truda v Promyshlennosti Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信