{"title":"高斯相关不等式在Kolmogorov扩散小偏差中的应用","authors":"M. Carfagnini","doi":"10.1214/22-ecp459","DOIUrl":null,"url":null,"abstract":"We consider an iterated Kolmogorov diffusion X t of step n . The small ball problem for X t is solved by means of the Gaussian correlation inequality. We also prove Chung’s laws of iterated logarithm for X t both at time zero and infinity.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An application of the Gaussian correlation inequality to the small deviations for a Kolmogorov diffusion\",\"authors\":\"M. Carfagnini\",\"doi\":\"10.1214/22-ecp459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an iterated Kolmogorov diffusion X t of step n . The small ball problem for X t is solved by means of the Gaussian correlation inequality. We also prove Chung’s laws of iterated logarithm for X t both at time zero and infinity.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ecp459\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp459","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
An application of the Gaussian correlation inequality to the small deviations for a Kolmogorov diffusion
We consider an iterated Kolmogorov diffusion X t of step n . The small ball problem for X t is solved by means of the Gaussian correlation inequality. We also prove Chung’s laws of iterated logarithm for X t both at time zero and infinity.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.