{"title":"二元多项式优化中的Chvátal秩","authors":"Alberto Del Pia, S. Di Gregorio","doi":"10.1287/IJOO.2019.0049","DOIUrl":null,"url":null,"abstract":"Recently, several classes of cutting planes have been introduced for binary polynomial optimization. In this paper, we present the first results connecting the combinatorial structure of these inequalities with their Chvátal rank. We determine the Chvátal rank of all known cutting planes and show that almost all of them have Chvátal rank 1. We observe that these inequalities have an associated hypergraph that is β-acyclic. Our second goal is to derive deeper cutting planes; to do so, we consider hypergraphs that admit β-cycles. We introduce a novel class of valid inequalities arising from odd β-cycles, that generally have Chvátal rank 2. These inequalities allow us to obtain the first characterization of the multilinear polytope for hypergraphs that contain β-cycles. Namely, we show that the multilinear polytope for cycle hypergraphs is given by the standard linearization inequalities, flower inequalities, and odd β-cycle inequalities. We also prove that odd β-cycle inequalities can be separated in linear time when the hypergraph is a cycle hypergraph. This shows that instances represented by cycle hypergraphs can be solved in polynomial time. Last, to test the strength of odd β-cycle inequalities, we perform numerical experiments that imply that they close a significant percentage of the integrality gap.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Chvátal Rank in Binary Polynomial Optimization\",\"authors\":\"Alberto Del Pia, S. Di Gregorio\",\"doi\":\"10.1287/IJOO.2019.0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, several classes of cutting planes have been introduced for binary polynomial optimization. In this paper, we present the first results connecting the combinatorial structure of these inequalities with their Chvátal rank. We determine the Chvátal rank of all known cutting planes and show that almost all of them have Chvátal rank 1. We observe that these inequalities have an associated hypergraph that is β-acyclic. Our second goal is to derive deeper cutting planes; to do so, we consider hypergraphs that admit β-cycles. We introduce a novel class of valid inequalities arising from odd β-cycles, that generally have Chvátal rank 2. These inequalities allow us to obtain the first characterization of the multilinear polytope for hypergraphs that contain β-cycles. Namely, we show that the multilinear polytope for cycle hypergraphs is given by the standard linearization inequalities, flower inequalities, and odd β-cycle inequalities. We also prove that odd β-cycle inequalities can be separated in linear time when the hypergraph is a cycle hypergraph. This shows that instances represented by cycle hypergraphs can be solved in polynomial time. Last, to test the strength of odd β-cycle inequalities, we perform numerical experiments that imply that they close a significant percentage of the integrality gap.\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/IJOO.2019.0049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/IJOO.2019.0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recently, several classes of cutting planes have been introduced for binary polynomial optimization. In this paper, we present the first results connecting the combinatorial structure of these inequalities with their Chvátal rank. We determine the Chvátal rank of all known cutting planes and show that almost all of them have Chvátal rank 1. We observe that these inequalities have an associated hypergraph that is β-acyclic. Our second goal is to derive deeper cutting planes; to do so, we consider hypergraphs that admit β-cycles. We introduce a novel class of valid inequalities arising from odd β-cycles, that generally have Chvátal rank 2. These inequalities allow us to obtain the first characterization of the multilinear polytope for hypergraphs that contain β-cycles. Namely, we show that the multilinear polytope for cycle hypergraphs is given by the standard linearization inequalities, flower inequalities, and odd β-cycle inequalities. We also prove that odd β-cycle inequalities can be separated in linear time when the hypergraph is a cycle hypergraph. This shows that instances represented by cycle hypergraphs can be solved in polynomial time. Last, to test the strength of odd β-cycle inequalities, we perform numerical experiments that imply that they close a significant percentage of the integrality gap.