度量空间中保形模的注释

Pub Date : 2022-08-25 DOI:10.7146/math.scand.a-136656
Matthew Romney
{"title":"度量空间中保形模的注释","authors":"Matthew Romney","doi":"10.7146/math.scand.a-136656","DOIUrl":null,"url":null,"abstract":"We give an example of an Ahlfors $3$-regular, linearly locally connected metric space homeomorphic to $\\mathbb {R}^3$ containing a nondegenerate continuum $E$ with zero capacity, in the sense that the conformal modulus of the set of nontrivial curves intersecting $E$ is zero. We discuss this example in relation to the quasiconformal uniformization problem for metric spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on conformal modulus in metric spaces\",\"authors\":\"Matthew Romney\",\"doi\":\"10.7146/math.scand.a-136656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an example of an Ahlfors $3$-regular, linearly locally connected metric space homeomorphic to $\\\\mathbb {R}^3$ containing a nondegenerate continuum $E$ with zero capacity, in the sense that the conformal modulus of the set of nontrivial curves intersecting $E$ is zero. We discuss this example in relation to the quasiconformal uniformization problem for metric spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-136656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-136656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一个Ahlfors $3$正则,线性局部连通度量空间同纯于$\mathbb {R}^3$,其中包含一个具有零容量的非退化连续体$E$,即与$E$相交的非平凡曲线集的共形模为零。我们将这个例子与度量空间的拟共形均匀化问题联系起来讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Remarks on conformal modulus in metric spaces
We give an example of an Ahlfors $3$-regular, linearly locally connected metric space homeomorphic to $\mathbb {R}^3$ containing a nondegenerate continuum $E$ with zero capacity, in the sense that the conformal modulus of the set of nontrivial curves intersecting $E$ is zero. We discuss this example in relation to the quasiconformal uniformization problem for metric spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信