{"title":"尺度收敛与范畴收敛","authors":"W. Wilczyński","doi":"10.2478/amsil-2020-0001","DOIUrl":null,"url":null,"abstract":"Abstract W. Orlicz in 1951 has observed that if {fn(·, y)}n∈N converges in measure to f(·, y) for each y ∈ [0, 1], then {fn}n∈N converges in measure to f on [0, 1] × [0, 1]. The situation is different for the convergence in category even if we assume the convergence in category of sequences {fn(·, y)}n∈N for each y ∈ [0, 1] and {fn(x, ·)}n∈N for each x ∈ [0, 1].","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"164 - 168"},"PeriodicalIF":0.4000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence in Measure and in Category\",\"authors\":\"W. Wilczyński\",\"doi\":\"10.2478/amsil-2020-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract W. Orlicz in 1951 has observed that if {fn(·, y)}n∈N converges in measure to f(·, y) for each y ∈ [0, 1], then {fn}n∈N converges in measure to f on [0, 1] × [0, 1]. The situation is different for the convergence in category even if we assume the convergence in category of sequences {fn(·, y)}n∈N for each y ∈ [0, 1] and {fn(x, ·)}n∈N for each x ∈ [0, 1].\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"34 1\",\"pages\":\"164 - 168\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2020-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
W. Orlicz(1951)观察到,对于每个y∈[0,1],如果{fn(·,y)}n∈n在测度上收敛于f(·,y),则{fn}n∈n在测度上收敛于f([0,1] ×[0,1]。即使我们假设序列{fn(·,y)}n∈n对每个y∈[0,1]和{fn(x,·)}n∈n对每个x∈[0,1]在范畴内收敛,在范畴内收敛的情况也是不同的。
Abstract W. Orlicz in 1951 has observed that if {fn(·, y)}n∈N converges in measure to f(·, y) for each y ∈ [0, 1], then {fn}n∈N converges in measure to f on [0, 1] × [0, 1]. The situation is different for the convergence in category even if we assume the convergence in category of sequences {fn(·, y)}n∈N for each y ∈ [0, 1] and {fn(x, ·)}n∈N for each x ∈ [0, 1].