具有时滞的Hilbert空间中二阶抽象粘弹性方程的一般衰变

IF 0.4 Q4 MATHEMATICS
Houria Chellaoua, Y. Boukhatem
{"title":"具有时滞的Hilbert空间中二阶抽象粘弹性方程的一般衰变","authors":"Houria Chellaoua, Y. Boukhatem","doi":"10.5269/bspm.52175","DOIUrl":null,"url":null,"abstract":"The paper is concerned with a second-order abstract viscoelastic equation with time delay and a relaxation function satisfying $ h^{\\prime}(t)\\leq -\\zeta(t) G(h(t))$. Under a suitable conditions, we establish an explicit and general decay rate results of the energy by introducing a suitable Lyaponov functional and some proprieties of the convex functions. Finally, some applications are given. This work generalizes the previous results without time delay term to those with delay.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General decay for second-order abstract viscoelastic equation in Hilbert spaces with time delay\",\"authors\":\"Houria Chellaoua, Y. Boukhatem\",\"doi\":\"10.5269/bspm.52175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with a second-order abstract viscoelastic equation with time delay and a relaxation function satisfying $ h^{\\\\prime}(t)\\\\leq -\\\\zeta(t) G(h(t))$. Under a suitable conditions, we establish an explicit and general decay rate results of the energy by introducing a suitable Lyaponov functional and some proprieties of the convex functions. Finally, some applications are given. This work generalizes the previous results without time delay term to those with delay.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一个具有时滞的二阶抽象粘弹性方程和满足$h^{\prime}(t)\leq-\zeta(t)G(h(t))$的松弛函数。在适当的条件下,我们通过引入一个适当的Lyaponov泛函和凸函数的一些性质,建立了能量的显式和一般的衰变率结果。最后给出了一些应用。这项工作将以前没有时间延迟项的结果推广到有延迟项的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General decay for second-order abstract viscoelastic equation in Hilbert spaces with time delay
The paper is concerned with a second-order abstract viscoelastic equation with time delay and a relaxation function satisfying $ h^{\prime}(t)\leq -\zeta(t) G(h(t))$. Under a suitable conditions, we establish an explicit and general decay rate results of the energy by introducing a suitable Lyaponov functional and some proprieties of the convex functions. Finally, some applications are given. This work generalizes the previous results without time delay term to those with delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信