{"title":"齿状回在记忆功能中的作用","authors":"Jonas-Frederic Sauer, M. Bartos","doi":"10.1515/nf-2020-0021","DOIUrl":null,"url":null,"abstract":"Abstract The hippocampus is decisive for the storage of conscious memories. Current theories suggest that experience-dependent modifications in excitation–inhibition balance enable a select group of neurons to form a new cell association during learning which represents the new memory trace. It was further proposed that particularly GABAergic-inhibitory interneurons have a large impact on population activity in neuronal networks by means of their inhibitory output synapses. They synchronize active principal cells at high frequencies, thereby supporting their binding to cell assemblies to jointly encode information. However, how cell associations emerge in space and time and how interneurons may contribute to this process is still largely unknown. We started to address this fundamental question in the dentate gyrus (DG) as the input gate of the hippocampus, which has an indispensable role in conscious memory formation. We used a combination of in vivo chronic two-photon imaging of population activity in the DG and the hippocampal areas CA1–3 of mice exposed to a virtual reality, in which they perform a goal-oriented spatial memory tasks, with high-density in vivo recordings and multiple whole-cell recordings in acute slice preparations, to determine how memory engrams emerge during learning. We further examine how GABAergic interneurons may contribute to this process. We believe that these lines of research will add to a better understanding on the mechanisms of memory formation in cortical networks.","PeriodicalId":56108,"journal":{"name":"Neuroforum","volume":"26 1","pages":"247 - 254"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/nf-2020-0021","citationCount":"0","resultStr":"{\"title\":\"The role of the dentate gyrus in mnemonic functions\",\"authors\":\"Jonas-Frederic Sauer, M. Bartos\",\"doi\":\"10.1515/nf-2020-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The hippocampus is decisive for the storage of conscious memories. Current theories suggest that experience-dependent modifications in excitation–inhibition balance enable a select group of neurons to form a new cell association during learning which represents the new memory trace. It was further proposed that particularly GABAergic-inhibitory interneurons have a large impact on population activity in neuronal networks by means of their inhibitory output synapses. They synchronize active principal cells at high frequencies, thereby supporting their binding to cell assemblies to jointly encode information. However, how cell associations emerge in space and time and how interneurons may contribute to this process is still largely unknown. We started to address this fundamental question in the dentate gyrus (DG) as the input gate of the hippocampus, which has an indispensable role in conscious memory formation. We used a combination of in vivo chronic two-photon imaging of population activity in the DG and the hippocampal areas CA1–3 of mice exposed to a virtual reality, in which they perform a goal-oriented spatial memory tasks, with high-density in vivo recordings and multiple whole-cell recordings in acute slice preparations, to determine how memory engrams emerge during learning. We further examine how GABAergic interneurons may contribute to this process. We believe that these lines of research will add to a better understanding on the mechanisms of memory formation in cortical networks.\",\"PeriodicalId\":56108,\"journal\":{\"name\":\"Neuroforum\",\"volume\":\"26 1\",\"pages\":\"247 - 254\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/nf-2020-0021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroforum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nf-2020-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroforum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nf-2020-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
The role of the dentate gyrus in mnemonic functions
Abstract The hippocampus is decisive for the storage of conscious memories. Current theories suggest that experience-dependent modifications in excitation–inhibition balance enable a select group of neurons to form a new cell association during learning which represents the new memory trace. It was further proposed that particularly GABAergic-inhibitory interneurons have a large impact on population activity in neuronal networks by means of their inhibitory output synapses. They synchronize active principal cells at high frequencies, thereby supporting their binding to cell assemblies to jointly encode information. However, how cell associations emerge in space and time and how interneurons may contribute to this process is still largely unknown. We started to address this fundamental question in the dentate gyrus (DG) as the input gate of the hippocampus, which has an indispensable role in conscious memory formation. We used a combination of in vivo chronic two-photon imaging of population activity in the DG and the hippocampal areas CA1–3 of mice exposed to a virtual reality, in which they perform a goal-oriented spatial memory tasks, with high-density in vivo recordings and multiple whole-cell recordings in acute slice preparations, to determine how memory engrams emerge during learning. We further examine how GABAergic interneurons may contribute to this process. We believe that these lines of research will add to a better understanding on the mechanisms of memory formation in cortical networks.
期刊介绍:
Neuroforum publishes invited review articles from all areas in neuroscience. Readership includes besides basic and medical neuroscientists also journalists, practicing physicians, school teachers and students. Neuroforum reports on all topics in neuroscience – from molecules to the neuronal networks, from synapses to bioethics.