{"title":"有向网络中去除链路的保连通分布式算法","authors":"Azwirman Gusrialdi","doi":"10.1017/nws.2022.25","DOIUrl":null,"url":null,"abstract":"Abstract This article considers the link removal problem in a strongly connected directed network with the goal of minimizing the dominant eigenvalue of the network’s adjacency matrix while maintaining its strong connectivity. Due to the complexity of the problem, this article focuses on computing a suboptimal solution. Furthermore, it is assumed that the knowledge of the overall network topology is not available. This calls for distributed algorithms which rely solely on the local information available to each individual node and information exchange between each node and its neighbors. Two different strategies based on matrix perturbation analysis are presented, namely simultaneous and iterative link removal strategies. Key ingredients in implementing both strategies include novel distributed algorithms for estimating the dominant eigenvectors of an adjacency matrix and for verifying strong connectivity of a directed network under link removal. It is shown via numerical simulations on different type of networks that in general the iterative link removal strategy yields a better suboptimal solution. However, it comes at a price of higher communication cost in comparison to the simultaneous link removal strategy.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectivity-preserving distributed algorithms for removing links in directed networks\",\"authors\":\"Azwirman Gusrialdi\",\"doi\":\"10.1017/nws.2022.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article considers the link removal problem in a strongly connected directed network with the goal of minimizing the dominant eigenvalue of the network’s adjacency matrix while maintaining its strong connectivity. Due to the complexity of the problem, this article focuses on computing a suboptimal solution. Furthermore, it is assumed that the knowledge of the overall network topology is not available. This calls for distributed algorithms which rely solely on the local information available to each individual node and information exchange between each node and its neighbors. Two different strategies based on matrix perturbation analysis are presented, namely simultaneous and iterative link removal strategies. Key ingredients in implementing both strategies include novel distributed algorithms for estimating the dominant eigenvectors of an adjacency matrix and for verifying strong connectivity of a directed network under link removal. It is shown via numerical simulations on different type of networks that in general the iterative link removal strategy yields a better suboptimal solution. However, it comes at a price of higher communication cost in comparison to the simultaneous link removal strategy.\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2022.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2022.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Connectivity-preserving distributed algorithms for removing links in directed networks
Abstract This article considers the link removal problem in a strongly connected directed network with the goal of minimizing the dominant eigenvalue of the network’s adjacency matrix while maintaining its strong connectivity. Due to the complexity of the problem, this article focuses on computing a suboptimal solution. Furthermore, it is assumed that the knowledge of the overall network topology is not available. This calls for distributed algorithms which rely solely on the local information available to each individual node and information exchange between each node and its neighbors. Two different strategies based on matrix perturbation analysis are presented, namely simultaneous and iterative link removal strategies. Key ingredients in implementing both strategies include novel distributed algorithms for estimating the dominant eigenvectors of an adjacency matrix and for verifying strong connectivity of a directed network under link removal. It is shown via numerical simulations on different type of networks that in general the iterative link removal strategy yields a better suboptimal solution. However, it comes at a price of higher communication cost in comparison to the simultaneous link removal strategy.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.