可穿透障碍物时域成像的线性采样方法分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. Cakoni, P. Monk, V. Selgás
{"title":"可穿透障碍物时域成像的线性采样方法分析","authors":"F. Cakoni, P. Monk, V. Selgás","doi":"10.2140/APDE.2021.14.667","DOIUrl":null,"url":null,"abstract":"We consider the problem of locating and reconstructing the geometry of a penetrable obstacle from time domain measurements of causal waves. More precisely, we assume that we are given the scattered field due to point sources placed on a surface enclosing the obstacle, and that the scattered field is measured on the same surface. From these multi-static scattering data we wish to determine the position and shape of the target. To deal with this inverse problem, we propose and analyze the Time Domain Linear Sampling Method (TDLSM) by means of localizing the interior transmission eigenvalues in the FourierLaplace domain. We also prove new time domain estimates for the forward problem and the interior transmission problem, as well as analyze several time domain operators arising in the inversion scheme.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Analysis of the linear sampling method for imaging penetrable obstacles in the time domain\",\"authors\":\"F. Cakoni, P. Monk, V. Selgás\",\"doi\":\"10.2140/APDE.2021.14.667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of locating and reconstructing the geometry of a penetrable obstacle from time domain measurements of causal waves. More precisely, we assume that we are given the scattered field due to point sources placed on a surface enclosing the obstacle, and that the scattered field is measured on the same surface. From these multi-static scattering data we wish to determine the position and shape of the target. To deal with this inverse problem, we propose and analyze the Time Domain Linear Sampling Method (TDLSM) by means of localizing the interior transmission eigenvalues in the FourierLaplace domain. We also prove new time domain estimates for the forward problem and the interior transmission problem, as well as analyze several time domain operators arising in the inversion scheme.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/APDE.2021.14.667\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/APDE.2021.14.667","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑了根据因果波的时域测量来定位和重建可穿透障碍物的几何结构的问题。更准确地说,我们假设我们得到了由于点源放置在包围障碍物的表面上而产生的散射场,并且散射场是在同一表面上测量的。根据这些多静态散射数据,我们希望确定目标的位置和形状。为了解决这个逆问题,我们提出并分析了时域线性采样方法(TDLSM),通过将内部传输特征值定位在FourierLaplace域中。我们还证明了前向问题和内传输问题的新时域估计,并分析了反演方案中出现的几个时域算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the linear sampling method for imaging penetrable obstacles in the time domain
We consider the problem of locating and reconstructing the geometry of a penetrable obstacle from time domain measurements of causal waves. More precisely, we assume that we are given the scattered field due to point sources placed on a surface enclosing the obstacle, and that the scattered field is measured on the same surface. From these multi-static scattering data we wish to determine the position and shape of the target. To deal with this inverse problem, we propose and analyze the Time Domain Linear Sampling Method (TDLSM) by means of localizing the interior transmission eigenvalues in the FourierLaplace domain. We also prove new time domain estimates for the forward problem and the interior transmission problem, as well as analyze several time domain operators arising in the inversion scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信