{"title":"茶籽油的抗氧化活性、多酚组成及体外抗菌、抗真菌活性","authors":"H. K. Ruto, J. Yugi, S. O. Ochanda, C. Bii","doi":"10.3989/gya.1229202","DOIUrl":null,"url":null,"abstract":"The polyphenolic composition and antioxidant activity of tea seed oil from C. sinensis TRFK 301/5 (green colored) and TRFK 306 (purple colored) and C. oleifera were evaluated. The total polyphenolic content, total catechins and catechin fractions were significantly different in the oils. C. oleifera contained significantly (p ≤ 0.05) higher amounts of catechins and polyphenols than C. sinensis. C. oleifera also exhibited a higher DPPH radical scavenging activity (18.81 ± 0.46%) compared to C. sinensis (TRFK 306; 15.98 ± 0.13 and TRFK 301/5; 14.73 ± 0.47%). The antimicrobial activities of tea seed oil and two selected oils (olive and eucalyptus oil), were also evaluated against Escherichia coli, Staphylococcus aureus, Candinda albicans, Cryptococcus neoformans and Trichophyton mentagrophytes. S. aureus was significantly inhibited by the oils compared to E. coli. The oils inhibited the growth of T. mentagrophytes and C. albicans, although they had no effect on C. neoformans. Tea seed oil is a potential source of beneficial phytochemicals and potent antimicrobial agents.","PeriodicalId":12839,"journal":{"name":"Grasas y Aceites","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidant activity, polyphenolic composition and in vitro antibacterial and antifungal activities of tea seed oil\",\"authors\":\"H. K. Ruto, J. Yugi, S. O. Ochanda, C. Bii\",\"doi\":\"10.3989/gya.1229202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The polyphenolic composition and antioxidant activity of tea seed oil from C. sinensis TRFK 301/5 (green colored) and TRFK 306 (purple colored) and C. oleifera were evaluated. The total polyphenolic content, total catechins and catechin fractions were significantly different in the oils. C. oleifera contained significantly (p ≤ 0.05) higher amounts of catechins and polyphenols than C. sinensis. C. oleifera also exhibited a higher DPPH radical scavenging activity (18.81 ± 0.46%) compared to C. sinensis (TRFK 306; 15.98 ± 0.13 and TRFK 301/5; 14.73 ± 0.47%). The antimicrobial activities of tea seed oil and two selected oils (olive and eucalyptus oil), were also evaluated against Escherichia coli, Staphylococcus aureus, Candinda albicans, Cryptococcus neoformans and Trichophyton mentagrophytes. S. aureus was significantly inhibited by the oils compared to E. coli. The oils inhibited the growth of T. mentagrophytes and C. albicans, although they had no effect on C. neoformans. Tea seed oil is a potential source of beneficial phytochemicals and potent antimicrobial agents.\",\"PeriodicalId\":12839,\"journal\":{\"name\":\"Grasas y Aceites\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grasas y Aceites\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3989/gya.1229202\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grasas y Aceites","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3989/gya.1229202","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Antioxidant activity, polyphenolic composition and in vitro antibacterial and antifungal activities of tea seed oil
The polyphenolic composition and antioxidant activity of tea seed oil from C. sinensis TRFK 301/5 (green colored) and TRFK 306 (purple colored) and C. oleifera were evaluated. The total polyphenolic content, total catechins and catechin fractions were significantly different in the oils. C. oleifera contained significantly (p ≤ 0.05) higher amounts of catechins and polyphenols than C. sinensis. C. oleifera also exhibited a higher DPPH radical scavenging activity (18.81 ± 0.46%) compared to C. sinensis (TRFK 306; 15.98 ± 0.13 and TRFK 301/5; 14.73 ± 0.47%). The antimicrobial activities of tea seed oil and two selected oils (olive and eucalyptus oil), were also evaluated against Escherichia coli, Staphylococcus aureus, Candinda albicans, Cryptococcus neoformans and Trichophyton mentagrophytes. S. aureus was significantly inhibited by the oils compared to E. coli. The oils inhibited the growth of T. mentagrophytes and C. albicans, although they had no effect on C. neoformans. Tea seed oil is a potential source of beneficial phytochemicals and potent antimicrobial agents.
期刊介绍:
Grasas y Aceites is a peer-reviewed journal devoted to the publication of original articles concerning the broad field of lipids, especially edible fats and oils from different origins, including non acyl lipids from microbial origin relevant to the food industry. It publishes full research articles, research notes, reviews as well as information on references, patents, and books.
Grasas y Aceites publishes original articles on basic or practical research, as well as review articles on lipid related topics in food science and technology, biology, (bio)chemistry, medical science, nutrition, (bio)technology, processing and engineering. Topics at the interface of basic research and applications are encouraged. Manuscripts related to by-products from the oil industry and the handling and treatment of the wastewaters are also welcomed.
Topics of special interest to Grasas y Aceites are:
-Lipid analysis, including sensory analysis
-Oleochemistry, including lipase modified lipids
-Biochemistry and molecular biology of lipids, including genetically modified oil crops and micro-organisms
-Lipids in health and disease, including functional foods and clinical studies
-Technical aspects of oil extraction and refining
-Processing and storage of oleaginous fruit, especially olive pickling
-Agricultural practices in oil crops, when affecting oil yield or quality