拟hilbertian Sobolev空间的张紧化

IF 1.3 2区 数学 Q1 MATHEMATICS
S. Eriksson-Bique, T. Rajala, Elefterios Soultanis
{"title":"拟hilbertian Sobolev空间的张紧化","authors":"S. Eriksson-Bique, T. Rajala, Elefterios Soultanis","doi":"10.4171/rmi/1433","DOIUrl":null,"url":null,"abstract":"The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space $X\\times Y$ can be determined from its factors. We show that two natural descriptions of the Sobolev space from the literature coincide, $W^{1,2}(X\\times Y)=J^{1,2}(X,Y)$, thus settling the tensorization problem for Sobolev spaces in the case $p=2$, when $X$ and $Y$ are infinitesimally quasi-Hilbertian, i.e. the Sobolev space $W^{1,2}$ admits an equivalent renorming by a Dirichlet form. This class includes in particular metric measure spaces $X,Y$ of finite Hausdorff dimension as well as infinitesimally Hilbertian spaces. More generally for $p\\in (1,\\infty)$ we obtain the norm-one inclusion $\\|f\\|_{J^{1,p}(X,Y)}\\le \\|f\\|_{W^{1,p}(X\\times Y)}$ and show that the norms agree on the algebraic tensor product $W^{1,p}(X)\\otimes W^{1,p}(Y)\\subset W^{1,p}(X\\times Y)$. When $p=2$ and $X$ and $Y$ are infinitesimally quasi-Hilbertian, standard Dirichlet form theory yields the density of $W^{1,2}(X)\\otimes W^{1,2}(Y)$ in $J^{1,2}(X,Y)$ thus implying the equality of the spaces. Our approach raises the question of the density of $W^{1,p}(X)\\otimes W^{1,p}(Y)$ in $J^{1,p}(X,Y)$ in the general case.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tensorization of quasi-Hilbertian Sobolev spaces\",\"authors\":\"S. Eriksson-Bique, T. Rajala, Elefterios Soultanis\",\"doi\":\"10.4171/rmi/1433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space $X\\\\times Y$ can be determined from its factors. We show that two natural descriptions of the Sobolev space from the literature coincide, $W^{1,2}(X\\\\times Y)=J^{1,2}(X,Y)$, thus settling the tensorization problem for Sobolev spaces in the case $p=2$, when $X$ and $Y$ are infinitesimally quasi-Hilbertian, i.e. the Sobolev space $W^{1,2}$ admits an equivalent renorming by a Dirichlet form. This class includes in particular metric measure spaces $X,Y$ of finite Hausdorff dimension as well as infinitesimally Hilbertian spaces. More generally for $p\\\\in (1,\\\\infty)$ we obtain the norm-one inclusion $\\\\|f\\\\|_{J^{1,p}(X,Y)}\\\\le \\\\|f\\\\|_{W^{1,p}(X\\\\times Y)}$ and show that the norms agree on the algebraic tensor product $W^{1,p}(X)\\\\otimes W^{1,p}(Y)\\\\subset W^{1,p}(X\\\\times Y)$. When $p=2$ and $X$ and $Y$ are infinitesimally quasi-Hilbertian, standard Dirichlet form theory yields the density of $W^{1,2}(X)\\\\otimes W^{1,2}(Y)$ in $J^{1,2}(X,Y)$ thus implying the equality of the spaces. Our approach raises the question of the density of $W^{1,p}(X)\\\\otimes W^{1,p}(Y)$ in $J^{1,p}(X,Y)$ in the general case.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1433\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1433","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

Sobolev空间的张量化问题要求刻画乘积度量空间$X\timesY$上的Sobolov空间如何由其因子确定。我们证明了文献中对Sobolev空间的两个自然描述是一致的,$W^{1,2}(X\times Y)=J^{1,2}(X,Y)$,从而解决了当$X$和$Y$是无穷小拟Hilbertian时,在$p=2$情况下Sobolev空间的张量化问题,即Sobolev空格$W^{1,2}$允许用Dirichlet形式等价重定。这类特别包括有限Hausdorff维数的度量测度空间$X,Y$以及无穷小Hilbert空间。更一般地,对于$p\in(1,\infty)$,我们得到范数一包含$\|f\|_{J^{1,p}(X,Y)}\le\|f| _{W^{0 1,p{(X\times Y)}$,并证明范数在代数张量积$W^{1、p}。当$p=2$和$X$和$Y$是无穷小拟希尔伯特时,标准狄利克雷形式理论在$J^{1,2}(X,Y)$中产生了$W^{1,2}(X)\otimes W^{1.2}(Y)$的密度,从而暗示了空间的相等性。我们的方法提出了在一般情况下$J^{1,p}(X,Y)$中$W^{1,p}(X)\otimes W^{1,p}(Y)$的密度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensorization of quasi-Hilbertian Sobolev spaces
The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space $X\times Y$ can be determined from its factors. We show that two natural descriptions of the Sobolev space from the literature coincide, $W^{1,2}(X\times Y)=J^{1,2}(X,Y)$, thus settling the tensorization problem for Sobolev spaces in the case $p=2$, when $X$ and $Y$ are infinitesimally quasi-Hilbertian, i.e. the Sobolev space $W^{1,2}$ admits an equivalent renorming by a Dirichlet form. This class includes in particular metric measure spaces $X,Y$ of finite Hausdorff dimension as well as infinitesimally Hilbertian spaces. More generally for $p\in (1,\infty)$ we obtain the norm-one inclusion $\|f\|_{J^{1,p}(X,Y)}\le \|f\|_{W^{1,p}(X\times Y)}$ and show that the norms agree on the algebraic tensor product $W^{1,p}(X)\otimes W^{1,p}(Y)\subset W^{1,p}(X\times Y)$. When $p=2$ and $X$ and $Y$ are infinitesimally quasi-Hilbertian, standard Dirichlet form theory yields the density of $W^{1,2}(X)\otimes W^{1,2}(Y)$ in $J^{1,2}(X,Y)$ thus implying the equality of the spaces. Our approach raises the question of the density of $W^{1,p}(X)\otimes W^{1,p}(Y)$ in $J^{1,p}(X,Y)$ in the general case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信