{"title":"具有线性和非线性扰动的非线性混合微分方程的边值问题","authors":"S. Melliani, A. El Allaoui, L. S. Chadli","doi":"10.1155/2020/9850924","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study a boundary value problem of the hybrid differential equation with linear and nonlinear perturbations. It generalizes the existing problem of second type. The existence result is constructed using the Leray–Schauder alternative, and the uniqueness is guaranteed by Banach’s fixed-point theorem. Towards the end of this paper, an example is provided to illustrate the obtained results.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/9850924","citationCount":"0","resultStr":"{\"title\":\"Boundary Value Problem of Nonlinear Hybrid Differential Equations with Linear and Nonlinear Perturbations\",\"authors\":\"S. Melliani, A. El Allaoui, L. S. Chadli\",\"doi\":\"10.1155/2020/9850924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study a boundary value problem of the hybrid differential equation with linear and nonlinear perturbations. It generalizes the existing problem of second type. The existence result is constructed using the Leray–Schauder alternative, and the uniqueness is guaranteed by Banach’s fixed-point theorem. Towards the end of this paper, an example is provided to illustrate the obtained results.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/9850924\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/9850924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/9850924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Boundary Value Problem of Nonlinear Hybrid Differential Equations with Linear and Nonlinear Perturbations
The aim of this paper is to study a boundary value problem of the hybrid differential equation with linear and nonlinear perturbations. It generalizes the existing problem of second type. The existence result is constructed using the Leray–Schauder alternative, and the uniqueness is guaranteed by Banach’s fixed-point theorem. Towards the end of this paper, an example is provided to illustrate the obtained results.