基于改进的灰太狼优化策略和核支持向量机的基于雾的智能资源管理方法

Q3 Chemistry
R. Sudha, G. Indirani, S. Selvamuthukumaran
{"title":"基于改进的灰太狼优化策略和核支持向量机的基于雾的智能资源管理方法","authors":"R. Sudha, G. Indirani, S. Selvamuthukumaran","doi":"10.1166/JCTN.2021.9401","DOIUrl":null,"url":null,"abstract":"Resource management is a significant task of scheduling and allocating resources to applications to meet the required Quality of Service (QoS) limitations by the minimization of overhead with an effective resource utilization. This paper presents a Fog-enabled Cloud computing resource\n management model for smart homes by the Improved Grey Wolf Optimization Strategy. Besides, Kernel Support Vector Machine (KSVM) model is applied for series forecasting of time and also of processing load of a distributed server and determine the proper resources which should be allocated for\n the optimization of the service response time. The presented IGWO-KSVM model has been simulated under several aspects and the outcome exhibited the outstanding performance of the presented model.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"18 1","pages":"1275-1281"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fog Enabled Cloud Based Intelligent Resource Management Approach Using Improved Grey Wolf Optimization Strategy and Kernel Support Vector Machine\",\"authors\":\"R. Sudha, G. Indirani, S. Selvamuthukumaran\",\"doi\":\"10.1166/JCTN.2021.9401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource management is a significant task of scheduling and allocating resources to applications to meet the required Quality of Service (QoS) limitations by the minimization of overhead with an effective resource utilization. This paper presents a Fog-enabled Cloud computing resource\\n management model for smart homes by the Improved Grey Wolf Optimization Strategy. Besides, Kernel Support Vector Machine (KSVM) model is applied for series forecasting of time and also of processing load of a distributed server and determine the proper resources which should be allocated for\\n the optimization of the service response time. The presented IGWO-KSVM model has been simulated under several aspects and the outcome exhibited the outstanding performance of the presented model.\",\"PeriodicalId\":15416,\"journal\":{\"name\":\"Journal of Computational and Theoretical Nanoscience\",\"volume\":\"18 1\",\"pages\":\"1275-1281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/JCTN.2021.9401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2021.9401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

资源管理是向应用程序调度和分配资源的重要任务,通过最大限度地减少开销和有效地利用资源来满足所需的服务质量(QoS)限制。本文采用改进的灰太狼优化策略,提出了一种基于雾的智能家居云计算资源管理模型。此外,将核支持向量机(KSVM)模型应用于分布式服务器的时间和处理负载的序列预测,并确定了优化服务响应时间所需的适当资源。对所提出的IGWO-KSVM模型进行了多方面的仿真,结果显示了所提出模型的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fog Enabled Cloud Based Intelligent Resource Management Approach Using Improved Grey Wolf Optimization Strategy and Kernel Support Vector Machine
Resource management is a significant task of scheduling and allocating resources to applications to meet the required Quality of Service (QoS) limitations by the minimization of overhead with an effective resource utilization. This paper presents a Fog-enabled Cloud computing resource management model for smart homes by the Improved Grey Wolf Optimization Strategy. Besides, Kernel Support Vector Machine (KSVM) model is applied for series forecasting of time and also of processing load of a distributed server and determine the proper resources which should be allocated for the optimization of the service response time. The presented IGWO-KSVM model has been simulated under several aspects and the outcome exhibited the outstanding performance of the presented model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Nanoscience
Journal of Computational and Theoretical Nanoscience 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.9 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信