{"title":"基于改进的灰太狼优化策略和核支持向量机的基于雾的智能资源管理方法","authors":"R. Sudha, G. Indirani, S. Selvamuthukumaran","doi":"10.1166/JCTN.2021.9401","DOIUrl":null,"url":null,"abstract":"Resource management is a significant task of scheduling and allocating resources to applications to meet the required Quality of Service (QoS) limitations by the minimization of overhead with an effective resource utilization. This paper presents a Fog-enabled Cloud computing resource\n management model for smart homes by the Improved Grey Wolf Optimization Strategy. Besides, Kernel Support Vector Machine (KSVM) model is applied for series forecasting of time and also of processing load of a distributed server and determine the proper resources which should be allocated for\n the optimization of the service response time. The presented IGWO-KSVM model has been simulated under several aspects and the outcome exhibited the outstanding performance of the presented model.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"18 1","pages":"1275-1281"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fog Enabled Cloud Based Intelligent Resource Management Approach Using Improved Grey Wolf Optimization Strategy and Kernel Support Vector Machine\",\"authors\":\"R. Sudha, G. Indirani, S. Selvamuthukumaran\",\"doi\":\"10.1166/JCTN.2021.9401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource management is a significant task of scheduling and allocating resources to applications to meet the required Quality of Service (QoS) limitations by the minimization of overhead with an effective resource utilization. This paper presents a Fog-enabled Cloud computing resource\\n management model for smart homes by the Improved Grey Wolf Optimization Strategy. Besides, Kernel Support Vector Machine (KSVM) model is applied for series forecasting of time and also of processing load of a distributed server and determine the proper resources which should be allocated for\\n the optimization of the service response time. The presented IGWO-KSVM model has been simulated under several aspects and the outcome exhibited the outstanding performance of the presented model.\",\"PeriodicalId\":15416,\"journal\":{\"name\":\"Journal of Computational and Theoretical Nanoscience\",\"volume\":\"18 1\",\"pages\":\"1275-1281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/JCTN.2021.9401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2021.9401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Fog Enabled Cloud Based Intelligent Resource Management Approach Using Improved Grey Wolf Optimization Strategy and Kernel Support Vector Machine
Resource management is a significant task of scheduling and allocating resources to applications to meet the required Quality of Service (QoS) limitations by the minimization of overhead with an effective resource utilization. This paper presents a Fog-enabled Cloud computing resource
management model for smart homes by the Improved Grey Wolf Optimization Strategy. Besides, Kernel Support Vector Machine (KSVM) model is applied for series forecasting of time and also of processing load of a distributed server and determine the proper resources which should be allocated for
the optimization of the service response time. The presented IGWO-KSVM model has been simulated under several aspects and the outcome exhibited the outstanding performance of the presented model.