K. Coleman, Grace N. Hoskin, L. Chasmer, Joshua R. Thienpont, W. Quinton, J. Korosi
{"title":"快速融化断续冻土泥炭地浅层湖泊的湖泊学和硅藻生态学","authors":"K. Coleman, Grace N. Hoskin, L. Chasmer, Joshua R. Thienpont, W. Quinton, J. Korosi","doi":"10.1080/20442041.2022.2144699","DOIUrl":null,"url":null,"abstract":"ABSTRACT Lakes in discontinuous permafrost peatlands are on the front lines of climate change, sensitive to even modest increases in air temperature. The aim of this study was to provide the first limnological characterization of shallow (∼1–2 m depth) lakes in the Scotty Creek basin (Northwest Territories, Canada), a field site of circumpolar significance due to the existence of long-term ecohydrological monitoring going back decades. We use this previous work as a foundation to advance our process-based understanding of the potential drivers of lake ecosystem change. Our results showed that dissolved organic carbon (DOC) and lake color were not correlated, a pattern that seems to be an important driver of diatom (siliceous single-celled algae) assemblages in these lakes. Diatoms in the study lakes tended to fall into 1 of 2 assemblage clusters. One cluster, composed of small benthic Fragilariaceae and small Navicula species (sensu lato), was found associated with higher lake color; the second cluster, composed of Encyonopsis and large Navicula species, was found associated with high DOC, lower color, and the presence of a benthic moss mat. From this finding, we suggest that DOC quality is a primary control on lake ecology in this region for its role in controlling light penetration to the lake bottom. Our hypothesis that the prevalence of nearshore fens and collapse scar wetlands would be important drivers of DOC was not supported in the 9 study lakes with available data to map shoreline features.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"13 1","pages":"13 - 29"},"PeriodicalIF":2.7000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limnology and diatom ecology of shallow lakes in a rapidly thawing discontinuous permafrost peatland\",\"authors\":\"K. Coleman, Grace N. Hoskin, L. Chasmer, Joshua R. Thienpont, W. Quinton, J. Korosi\",\"doi\":\"10.1080/20442041.2022.2144699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Lakes in discontinuous permafrost peatlands are on the front lines of climate change, sensitive to even modest increases in air temperature. The aim of this study was to provide the first limnological characterization of shallow (∼1–2 m depth) lakes in the Scotty Creek basin (Northwest Territories, Canada), a field site of circumpolar significance due to the existence of long-term ecohydrological monitoring going back decades. We use this previous work as a foundation to advance our process-based understanding of the potential drivers of lake ecosystem change. Our results showed that dissolved organic carbon (DOC) and lake color were not correlated, a pattern that seems to be an important driver of diatom (siliceous single-celled algae) assemblages in these lakes. Diatoms in the study lakes tended to fall into 1 of 2 assemblage clusters. One cluster, composed of small benthic Fragilariaceae and small Navicula species (sensu lato), was found associated with higher lake color; the second cluster, composed of Encyonopsis and large Navicula species, was found associated with high DOC, lower color, and the presence of a benthic moss mat. From this finding, we suggest that DOC quality is a primary control on lake ecology in this region for its role in controlling light penetration to the lake bottom. Our hypothesis that the prevalence of nearshore fens and collapse scar wetlands would be important drivers of DOC was not supported in the 9 study lakes with available data to map shoreline features.\",\"PeriodicalId\":49061,\"journal\":{\"name\":\"Inland Waters\",\"volume\":\"13 1\",\"pages\":\"13 - 29\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inland Waters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/20442041.2022.2144699\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20442041.2022.2144699","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Limnology and diatom ecology of shallow lakes in a rapidly thawing discontinuous permafrost peatland
ABSTRACT Lakes in discontinuous permafrost peatlands are on the front lines of climate change, sensitive to even modest increases in air temperature. The aim of this study was to provide the first limnological characterization of shallow (∼1–2 m depth) lakes in the Scotty Creek basin (Northwest Territories, Canada), a field site of circumpolar significance due to the existence of long-term ecohydrological monitoring going back decades. We use this previous work as a foundation to advance our process-based understanding of the potential drivers of lake ecosystem change. Our results showed that dissolved organic carbon (DOC) and lake color were not correlated, a pattern that seems to be an important driver of diatom (siliceous single-celled algae) assemblages in these lakes. Diatoms in the study lakes tended to fall into 1 of 2 assemblage clusters. One cluster, composed of small benthic Fragilariaceae and small Navicula species (sensu lato), was found associated with higher lake color; the second cluster, composed of Encyonopsis and large Navicula species, was found associated with high DOC, lower color, and the presence of a benthic moss mat. From this finding, we suggest that DOC quality is a primary control on lake ecology in this region for its role in controlling light penetration to the lake bottom. Our hypothesis that the prevalence of nearshore fens and collapse scar wetlands would be important drivers of DOC was not supported in the 9 study lakes with available data to map shoreline features.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.