解析函数代数的连续参数Katznelson–Tzafriri定理

IF 0.7 3区 数学 Q2 MATHEMATICS
C. Batty, D. Seifert
{"title":"解析函数代数的连续参数Katznelson–Tzafriri定理","authors":"C. Batty, D. Seifert","doi":"10.4064/sm220428-13-10","DOIUrl":null,"url":null,"abstract":". We prove a continuous-parameter version of the recent theorem of Katznelson–Tzafiri type for power-bounded operators which have a bounded calculus for analytic Besov functions. We also show that the result can be extended to some operators which have functional calculi with respect to some larger algebras.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A continuous-parameter Katznelson–Tzafriri theorem for algebras of analytic functions\",\"authors\":\"C. Batty, D. Seifert\",\"doi\":\"10.4064/sm220428-13-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We prove a continuous-parameter version of the recent theorem of Katznelson–Tzafiri type for power-bounded operators which have a bounded calculus for analytic Besov functions. We also show that the result can be extended to some operators which have functional calculi with respect to some larger algebras.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm220428-13-10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220428-13-10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

.我们证明了最近关于幂有界算子的Katznelson–Tza fi ri型定理的连续参数版本,该算子具有解析Besov函数的有界演算。我们还证明了这个结果可以推广到一些算子,这些算子对于一些较大的代数具有函数演算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A continuous-parameter Katznelson–Tzafriri theorem for algebras of analytic functions
. We prove a continuous-parameter version of the recent theorem of Katznelson–Tzafiri type for power-bounded operators which have a bounded calculus for analytic Besov functions. We also show that the result can be extended to some operators which have functional calculi with respect to some larger algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信