{"title":"古宙表观遗传学系统的证据","authors":"P. Blum, Sophie Payne","doi":"10.1177/2516865719865280","DOIUrl":null,"url":null,"abstract":"Changes in the phenotype of a cell or organism that are heritable but do not involve changes in DNA sequence are referred to as epigenetic. They occur primarily through the gain or loss of chemical modification of chromatin protein or DNA. Epigenetics is therefore a non-Mendelian process. The study of epigenetics in eukaryotes is expanding with advances in knowledge about the relationship between mechanism and phenotype and as a requirement for multicellularity and cancer. However, life also includes other groups or domains, notably the bacteria and archaea. The occurrence of epigenetics in these deep lineages is an emerging topic accompanied by controversy. In these non-eukaryotic organisms, epigenetics is critically important because it stimulates new evolutionary theory and refines perspective about biological action.","PeriodicalId":41996,"journal":{"name":"Epigenetics Insights","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2516865719865280","citationCount":"7","resultStr":"{\"title\":\"Evidence of an Epigenetics System in Archaea\",\"authors\":\"P. Blum, Sophie Payne\",\"doi\":\"10.1177/2516865719865280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in the phenotype of a cell or organism that are heritable but do not involve changes in DNA sequence are referred to as epigenetic. They occur primarily through the gain or loss of chemical modification of chromatin protein or DNA. Epigenetics is therefore a non-Mendelian process. The study of epigenetics in eukaryotes is expanding with advances in knowledge about the relationship between mechanism and phenotype and as a requirement for multicellularity and cancer. However, life also includes other groups or domains, notably the bacteria and archaea. The occurrence of epigenetics in these deep lineages is an emerging topic accompanied by controversy. In these non-eukaryotic organisms, epigenetics is critically important because it stimulates new evolutionary theory and refines perspective about biological action.\",\"PeriodicalId\":41996,\"journal\":{\"name\":\"Epigenetics Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2516865719865280\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2516865719865280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516865719865280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Changes in the phenotype of a cell or organism that are heritable but do not involve changes in DNA sequence are referred to as epigenetic. They occur primarily through the gain or loss of chemical modification of chromatin protein or DNA. Epigenetics is therefore a non-Mendelian process. The study of epigenetics in eukaryotes is expanding with advances in knowledge about the relationship between mechanism and phenotype and as a requirement for multicellularity and cancer. However, life also includes other groups or domains, notably the bacteria and archaea. The occurrence of epigenetics in these deep lineages is an emerging topic accompanied by controversy. In these non-eukaryotic organisms, epigenetics is critically important because it stimulates new evolutionary theory and refines perspective about biological action.