{"title":"木材中入侵性枯木白蚁短隐白蚁的无损检测","authors":"J. Mcdonald, C. Fitzgerald, B. Hassan, J. Morrell","doi":"10.13102/sociobiology.v69i4.7881","DOIUrl":null,"url":null,"abstract":"Reliable drywood termite detection in structures is challenging but is critical for effective management. A microwave-based non-destructive method was evaluated for detecting termite activity. This study evaluated factors affecting the ability of this device to reliably detect Cryptotermes brevis in timber. The device displayed a high probability of successfully detecting C. brevis in naturally infested boards. The system detected termites 97% of the time when used at the highest sensitivity level, while producing few false positives. The number of termites did not affect detection ability, and detectable signals were produced even when a single termite was present. Detection success decreased with both increasing wood density and testing perpendicular to the grain in abrupt transition timber species. The device detected termites to a maximum depth of 45 mm in southern pine (Pinus spp.), but sensitivity declined with increased wood density with the detection limit declining to only 20 mm in denser Tasmanian oak (Eucalyptus spp). The device could only detect termites in samples with densities between 392 to 511 kg/m3 in 38 mm thick radiata pine samples. The results support the ability of microwaves to reliably detect C. brevis in timber.\n ","PeriodicalId":21971,"journal":{"name":"Sociobiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-destructive Detection of an Invasive Drywood Termite, Cryptotermes brevis (Blattodea: Kalotermitidae), in Timber\",\"authors\":\"J. Mcdonald, C. Fitzgerald, B. Hassan, J. Morrell\",\"doi\":\"10.13102/sociobiology.v69i4.7881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable drywood termite detection in structures is challenging but is critical for effective management. A microwave-based non-destructive method was evaluated for detecting termite activity. This study evaluated factors affecting the ability of this device to reliably detect Cryptotermes brevis in timber. The device displayed a high probability of successfully detecting C. brevis in naturally infested boards. The system detected termites 97% of the time when used at the highest sensitivity level, while producing few false positives. The number of termites did not affect detection ability, and detectable signals were produced even when a single termite was present. Detection success decreased with both increasing wood density and testing perpendicular to the grain in abrupt transition timber species. The device detected termites to a maximum depth of 45 mm in southern pine (Pinus spp.), but sensitivity declined with increased wood density with the detection limit declining to only 20 mm in denser Tasmanian oak (Eucalyptus spp). The device could only detect termites in samples with densities between 392 to 511 kg/m3 in 38 mm thick radiata pine samples. The results support the ability of microwaves to reliably detect C. brevis in timber.\\n \",\"PeriodicalId\":21971,\"journal\":{\"name\":\"Sociobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociobiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13102/sociobiology.v69i4.7881\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociobiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13102/sociobiology.v69i4.7881","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Non-destructive Detection of an Invasive Drywood Termite, Cryptotermes brevis (Blattodea: Kalotermitidae), in Timber
Reliable drywood termite detection in structures is challenging but is critical for effective management. A microwave-based non-destructive method was evaluated for detecting termite activity. This study evaluated factors affecting the ability of this device to reliably detect Cryptotermes brevis in timber. The device displayed a high probability of successfully detecting C. brevis in naturally infested boards. The system detected termites 97% of the time when used at the highest sensitivity level, while producing few false positives. The number of termites did not affect detection ability, and detectable signals were produced even when a single termite was present. Detection success decreased with both increasing wood density and testing perpendicular to the grain in abrupt transition timber species. The device detected termites to a maximum depth of 45 mm in southern pine (Pinus spp.), but sensitivity declined with increased wood density with the detection limit declining to only 20 mm in denser Tasmanian oak (Eucalyptus spp). The device could only detect termites in samples with densities between 392 to 511 kg/m3 in 38 mm thick radiata pine samples. The results support the ability of microwaves to reliably detect C. brevis in timber.
期刊介绍:
SOCIOBIOLOGY publishes high quality articles that significantly contribute to the knowledge of Entomology, with emphasis on social insects. Articles previously submitted to other journals are not accepted. SOCIOBIOLOGY publishes original research papers and invited review articles on all aspects related to the biology, evolution and systematics of social and pre-social insects (Ants, Termites, Bees and Wasps). The journal is currently expanding its scope to incorporate the publication of articles dealing with other arthropods that exhibit sociality. Articles may cover a range of subjects such as ecology, ethology, morphology, population genetics, physiology, toxicology, reproduction, sociobiology, caste differentiation as well as economic impact and pest management.