{"title":"基于DDPG的群空战自主机动策略","authors":"Luhe Wang, Jinwen Hu, Zhao Xu, Chunhui Zhao","doi":"10.1007/s43684-021-00013-z","DOIUrl":null,"url":null,"abstract":"<div><p>Unmanned aerial vehicles (UAVs) have been found significantly important in the air combats, where intelligent and swarms of UAVs will be able to tackle with the tasks of high complexity and dynamics. The key to empower the UAVs with such capability is the autonomous maneuver decision making. In this paper, an autonomous maneuver strategy of UAV swarms in beyond visual range air combat based on reinforcement learning is proposed. First, based on the process of air combat and the constraints of the swarm, the motion model of UAV and the multi-to-one air combat model are established. Second, a two-stage maneuver strategy based on air combat principles is designed which include inter-vehicle collaboration and target-vehicle confrontation. Then, a swarm air combat algorithm based on deep deterministic policy gradient strategy (DDPG) is proposed for online strategy training. Finally, the effectiveness of the proposed algorithm is validated by multi-scene simulations. The results show that the algorithm is suitable for UAV swarms of different scales.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-021-00013-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Autonomous maneuver strategy of swarm air combat based on DDPG\",\"authors\":\"Luhe Wang, Jinwen Hu, Zhao Xu, Chunhui Zhao\",\"doi\":\"10.1007/s43684-021-00013-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unmanned aerial vehicles (UAVs) have been found significantly important in the air combats, where intelligent and swarms of UAVs will be able to tackle with the tasks of high complexity and dynamics. The key to empower the UAVs with such capability is the autonomous maneuver decision making. In this paper, an autonomous maneuver strategy of UAV swarms in beyond visual range air combat based on reinforcement learning is proposed. First, based on the process of air combat and the constraints of the swarm, the motion model of UAV and the multi-to-one air combat model are established. Second, a two-stage maneuver strategy based on air combat principles is designed which include inter-vehicle collaboration and target-vehicle confrontation. Then, a swarm air combat algorithm based on deep deterministic policy gradient strategy (DDPG) is proposed for online strategy training. Finally, the effectiveness of the proposed algorithm is validated by multi-scene simulations. The results show that the algorithm is suitable for UAV swarms of different scales.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-021-00013-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-021-00013-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-021-00013-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous maneuver strategy of swarm air combat based on DDPG
Unmanned aerial vehicles (UAVs) have been found significantly important in the air combats, where intelligent and swarms of UAVs will be able to tackle with the tasks of high complexity and dynamics. The key to empower the UAVs with such capability is the autonomous maneuver decision making. In this paper, an autonomous maneuver strategy of UAV swarms in beyond visual range air combat based on reinforcement learning is proposed. First, based on the process of air combat and the constraints of the swarm, the motion model of UAV and the multi-to-one air combat model are established. Second, a two-stage maneuver strategy based on air combat principles is designed which include inter-vehicle collaboration and target-vehicle confrontation. Then, a swarm air combat algorithm based on deep deterministic policy gradient strategy (DDPG) is proposed for online strategy training. Finally, the effectiveness of the proposed algorithm is validated by multi-scene simulations. The results show that the algorithm is suitable for UAV swarms of different scales.