基于DDPG的群空战自主机动策略

Luhe Wang, Jinwen Hu, Zhao Xu, Chunhui Zhao
{"title":"基于DDPG的群空战自主机动策略","authors":"Luhe Wang,&nbsp;Jinwen Hu,&nbsp;Zhao Xu,&nbsp;Chunhui Zhao","doi":"10.1007/s43684-021-00013-z","DOIUrl":null,"url":null,"abstract":"<div><p>Unmanned aerial vehicles (UAVs) have been found significantly important in the air combats, where intelligent and swarms of UAVs will be able to tackle with the tasks of high complexity and dynamics. The key to empower the UAVs with such capability is the autonomous maneuver decision making. In this paper, an autonomous maneuver strategy of UAV swarms in beyond visual range air combat based on reinforcement learning is proposed. First, based on the process of air combat and the constraints of the swarm, the motion model of UAV and the multi-to-one air combat model are established. Second, a two-stage maneuver strategy based on air combat principles is designed which include inter-vehicle collaboration and target-vehicle confrontation. Then, a swarm air combat algorithm based on deep deterministic policy gradient strategy (DDPG) is proposed for online strategy training. Finally, the effectiveness of the proposed algorithm is validated by multi-scene simulations. The results show that the algorithm is suitable for UAV swarms of different scales.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-021-00013-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Autonomous maneuver strategy of swarm air combat based on DDPG\",\"authors\":\"Luhe Wang,&nbsp;Jinwen Hu,&nbsp;Zhao Xu,&nbsp;Chunhui Zhao\",\"doi\":\"10.1007/s43684-021-00013-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unmanned aerial vehicles (UAVs) have been found significantly important in the air combats, where intelligent and swarms of UAVs will be able to tackle with the tasks of high complexity and dynamics. The key to empower the UAVs with such capability is the autonomous maneuver decision making. In this paper, an autonomous maneuver strategy of UAV swarms in beyond visual range air combat based on reinforcement learning is proposed. First, based on the process of air combat and the constraints of the swarm, the motion model of UAV and the multi-to-one air combat model are established. Second, a two-stage maneuver strategy based on air combat principles is designed which include inter-vehicle collaboration and target-vehicle confrontation. Then, a swarm air combat algorithm based on deep deterministic policy gradient strategy (DDPG) is proposed for online strategy training. Finally, the effectiveness of the proposed algorithm is validated by multi-scene simulations. The results show that the algorithm is suitable for UAV swarms of different scales.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-021-00013-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-021-00013-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-021-00013-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无人驾驶飞行器(UAVs)在空战中发挥着重要作用,智能化和成群的无人驾驶飞行器将能够应对高复杂性和高动态性的任务。赋予无人机这种能力的关键在于自主机动决策。本文提出了一种基于强化学习的超视距空战无人机群自主机动策略。首先,基于空战过程和蜂群约束条件,建立无人机运动模型和多对一空战模型。其次,设计了基于空战原理的两阶段机动策略,包括飞行器之间的协作和目标飞行器之间的对抗。然后,提出了一种基于深度确定性策略梯度(DDPG)的蜂群空战算法,用于在线策略训练。最后,通过多场景仿真验证了所提算法的有效性。结果表明,该算法适用于不同规模的无人机群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous maneuver strategy of swarm air combat based on DDPG

Unmanned aerial vehicles (UAVs) have been found significantly important in the air combats, where intelligent and swarms of UAVs will be able to tackle with the tasks of high complexity and dynamics. The key to empower the UAVs with such capability is the autonomous maneuver decision making. In this paper, an autonomous maneuver strategy of UAV swarms in beyond visual range air combat based on reinforcement learning is proposed. First, based on the process of air combat and the constraints of the swarm, the motion model of UAV and the multi-to-one air combat model are established. Second, a two-stage maneuver strategy based on air combat principles is designed which include inter-vehicle collaboration and target-vehicle confrontation. Then, a swarm air combat algorithm based on deep deterministic policy gradient strategy (DDPG) is proposed for online strategy training. Finally, the effectiveness of the proposed algorithm is validated by multi-scene simulations. The results show that the algorithm is suitable for UAV swarms of different scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信