Tuo Ye, Meirong Dong, Youcai Liang, Jiajian Long, Weijie Li, Jidong Lu
{"title":"基于可解释机器学习算法的燃煤锅炉NOX生成特性建模与优化","authors":"Tuo Ye, Meirong Dong, Youcai Liang, Jiajian Long, Weijie Li, Jidong Lu","doi":"10.1080/15435075.2021.1947827","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present work focused on modeling the nitrogen oxides (NOX) generation characteristics based on the interpretable machine learning algorithm for an in-service coal-fired power plant. Computational Fluid Dynamics is available to obtain the NOX generation data, which coupled with the historical operation data collected from Distributed Control System were used to improve the model’s prediction ability. The results showed that the depth and integrity of the dataset could be improved by adding simulation data. Compared with the Artificial Neural Network (ANN) and Support Vector Regression (SVR), the Gradient Boost Regression Tree (GBRT) model had higher accuracy than that of ANN and SVR model, and the GBRT model with more vital nonlinear transformation expression and time sequence is more suitable for the dataset, where the mean absolute error and coefficient of determination of the GBRT model were 3.85 and 0.98, respectively. Moreover, the Shapley additive interpretation analysis approach was presented for the GBRT model of NOX generation prediction, which is helpful to the field operators to realize the efficient and low pollution operation of boiler equipment.","PeriodicalId":14000,"journal":{"name":"International Journal of Green Energy","volume":"19 1","pages":"529 - 543"},"PeriodicalIF":3.1000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling and optimization of the NOX generation characteristics of the coal-fired boiler based on interpretable machine learning algorithm\",\"authors\":\"Tuo Ye, Meirong Dong, Youcai Liang, Jiajian Long, Weijie Li, Jidong Lu\",\"doi\":\"10.1080/15435075.2021.1947827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The present work focused on modeling the nitrogen oxides (NOX) generation characteristics based on the interpretable machine learning algorithm for an in-service coal-fired power plant. Computational Fluid Dynamics is available to obtain the NOX generation data, which coupled with the historical operation data collected from Distributed Control System were used to improve the model’s prediction ability. The results showed that the depth and integrity of the dataset could be improved by adding simulation data. Compared with the Artificial Neural Network (ANN) and Support Vector Regression (SVR), the Gradient Boost Regression Tree (GBRT) model had higher accuracy than that of ANN and SVR model, and the GBRT model with more vital nonlinear transformation expression and time sequence is more suitable for the dataset, where the mean absolute error and coefficient of determination of the GBRT model were 3.85 and 0.98, respectively. Moreover, the Shapley additive interpretation analysis approach was presented for the GBRT model of NOX generation prediction, which is helpful to the field operators to realize the efficient and low pollution operation of boiler equipment.\",\"PeriodicalId\":14000,\"journal\":{\"name\":\"International Journal of Green Energy\",\"volume\":\"19 1\",\"pages\":\"529 - 543\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Green Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15435075.2021.1947827\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15435075.2021.1947827","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Modeling and optimization of the NOX generation characteristics of the coal-fired boiler based on interpretable machine learning algorithm
ABSTRACT The present work focused on modeling the nitrogen oxides (NOX) generation characteristics based on the interpretable machine learning algorithm for an in-service coal-fired power plant. Computational Fluid Dynamics is available to obtain the NOX generation data, which coupled with the historical operation data collected from Distributed Control System were used to improve the model’s prediction ability. The results showed that the depth and integrity of the dataset could be improved by adding simulation data. Compared with the Artificial Neural Network (ANN) and Support Vector Regression (SVR), the Gradient Boost Regression Tree (GBRT) model had higher accuracy than that of ANN and SVR model, and the GBRT model with more vital nonlinear transformation expression and time sequence is more suitable for the dataset, where the mean absolute error and coefficient of determination of the GBRT model were 3.85 and 0.98, respectively. Moreover, the Shapley additive interpretation analysis approach was presented for the GBRT model of NOX generation prediction, which is helpful to the field operators to realize the efficient and low pollution operation of boiler equipment.
期刊介绍:
International Journal of Green Energy shares multidisciplinary research results in the fields of energy research, energy conversion, energy management, and energy conservation, with a particular interest in advanced, environmentally friendly energy technologies. We publish research that focuses on the forms and utilizations of energy that have no, minimal, or reduced impact on environment, economy and society.