自由文本灵感搜索,为工程设计提供系统的生物灵感支持

IF 1.7 3区 工程技术 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
M. Willocx, J. Duflou
{"title":"自由文本灵感搜索,为工程设计提供系统的生物灵感支持","authors":"M. Willocx, J. Duflou","doi":"10.1017/S0890060423000173","DOIUrl":null,"url":null,"abstract":"Abstract Current supportive bio-inspired design methods focus on handcrafting the inspiration engineers use to speed up bio-inspired design. However promising, such methods are not scalable as the time investment is shifted to an up-front investment. Furthermore, most proposed methods require the engineer to adopt a new design process. The current study presents FISh, a scalable search method based on the standard engineering design process. By leveraging machine translation between a representative corpus of biological and engineering texts, the engineer can start the search using engineering terminology, which, behind the scenes, is automatically converted to a biological query. This conversion is done using language models trained on patents and biological publications for the engineering and biology domains. Both models are aligned using the most used English words. The biological query is used to retrieve biological documents that describe the most relevant functionality for the engineering query. The presented method allows searching for bio-inspiration using a free-text query. Furthermore, updating the underlying datasets, models and organism aspects is automated, allowing the system to stay up to date without requiring interactive effort. Finally, the search functionality is validated by comparing the search results for the functionality of existing bio-inspired designs with their inspiring organisms.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free-text inspiration search for systematic bio-inspiration support of engineering design\",\"authors\":\"M. Willocx, J. Duflou\",\"doi\":\"10.1017/S0890060423000173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Current supportive bio-inspired design methods focus on handcrafting the inspiration engineers use to speed up bio-inspired design. However promising, such methods are not scalable as the time investment is shifted to an up-front investment. Furthermore, most proposed methods require the engineer to adopt a new design process. The current study presents FISh, a scalable search method based on the standard engineering design process. By leveraging machine translation between a representative corpus of biological and engineering texts, the engineer can start the search using engineering terminology, which, behind the scenes, is automatically converted to a biological query. This conversion is done using language models trained on patents and biological publications for the engineering and biology domains. Both models are aligned using the most used English words. The biological query is used to retrieve biological documents that describe the most relevant functionality for the engineering query. The presented method allows searching for bio-inspiration using a free-text query. Furthermore, updating the underlying datasets, models and organism aspects is automated, allowing the system to stay up to date without requiring interactive effort. Finally, the search functionality is validated by comparing the search results for the functionality of existing bio-inspired designs with their inspiring organisms.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060423000173\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060423000173","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要当前支持性的仿生设计方法侧重于手工制作工程师用来加快仿生设计的灵感。无论前景如何,随着时间投资转向前期投资,这种方法都是不可扩展的。此外,大多数提出的方法都要求工程师采用新的设计流程。目前的研究提出了FISh,一种基于标准工程设计过程的可扩展搜索方法。通过利用生物和工程文本的代表性语料库之间的机器翻译,工程师可以使用工程术语开始搜索,在幕后,工程术语会自动转换为生物查询。这种转换是使用在工程和生物学领域的专利和生物学出版物上训练的语言模型来完成的。两个模型都使用了最常用的英语单词。生物学查询用于检索描述工程查询的最相关功能的生物学文档。所提出的方法允许使用自由文本查询来搜索生物灵感。此外,更新基础数据集、模型和生物体方面是自动化的,使系统能够保持最新,而无需交互。最后,通过比较现有仿生设计及其仿生生物体的功能搜索结果,验证了搜索功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free-text inspiration search for systematic bio-inspiration support of engineering design
Abstract Current supportive bio-inspired design methods focus on handcrafting the inspiration engineers use to speed up bio-inspired design. However promising, such methods are not scalable as the time investment is shifted to an up-front investment. Furthermore, most proposed methods require the engineer to adopt a new design process. The current study presents FISh, a scalable search method based on the standard engineering design process. By leveraging machine translation between a representative corpus of biological and engineering texts, the engineer can start the search using engineering terminology, which, behind the scenes, is automatically converted to a biological query. This conversion is done using language models trained on patents and biological publications for the engineering and biology domains. Both models are aligned using the most used English words. The biological query is used to retrieve biological documents that describe the most relevant functionality for the engineering query. The presented method allows searching for bio-inspiration using a free-text query. Furthermore, updating the underlying datasets, models and organism aspects is automated, allowing the system to stay up to date without requiring interactive effort. Finally, the search functionality is validated by comparing the search results for the functionality of existing bio-inspired designs with their inspiring organisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
14.30%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信