{"title":"用变分自动编码器重构量子态","authors":"Chuangtao Chen, Zhimin He, Zhiming Huang, Haozhen Situ","doi":"10.1142/s0219749921400050","DOIUrl":null,"url":null,"abstract":"Quantum state tomography (QST) is an important and challenging task in the field of quantum information, which has attracted a lot of attentions in recent years. Machine learning models can provide a classical representation of the quantum state after trained on the measurement outcomes, which are part of effective techniques to solve QST problem. In this work, we use a variational autoencoder (VAE) to learn the measurement distribution of two quantum states generated by MPS circuits. We first consider the Greenberger–Horne–Zeilinger (GHZ) state which can be generated by a simple MPS circuit. Simulation results show that a VAE can reconstruct 3- to 8-qubit GHZ states with a high fidelity, i.e., 0.99, and is robust to depolarizing noise. The minimum number ([Formula: see text]) of training samples required to reconstruct the GHZ state up to 0.99 fidelity scales approximately linearly with the number of qubits ([Formula: see text]). However, for the quantum state generated by a complex MPS circuit, [Formula: see text] increases exponentially with [Formula: see text], especially for the quantum state with high entanglement entropy.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reconstructing a quantum state with a variational autoencoder\",\"authors\":\"Chuangtao Chen, Zhimin He, Zhiming Huang, Haozhen Situ\",\"doi\":\"10.1142/s0219749921400050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum state tomography (QST) is an important and challenging task in the field of quantum information, which has attracted a lot of attentions in recent years. Machine learning models can provide a classical representation of the quantum state after trained on the measurement outcomes, which are part of effective techniques to solve QST problem. In this work, we use a variational autoencoder (VAE) to learn the measurement distribution of two quantum states generated by MPS circuits. We first consider the Greenberger–Horne–Zeilinger (GHZ) state which can be generated by a simple MPS circuit. Simulation results show that a VAE can reconstruct 3- to 8-qubit GHZ states with a high fidelity, i.e., 0.99, and is robust to depolarizing noise. The minimum number ([Formula: see text]) of training samples required to reconstruct the GHZ state up to 0.99 fidelity scales approximately linearly with the number of qubits ([Formula: see text]). However, for the quantum state generated by a complex MPS circuit, [Formula: see text] increases exponentially with [Formula: see text], especially for the quantum state with high entanglement entropy.\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219749921400050\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749921400050","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Reconstructing a quantum state with a variational autoencoder
Quantum state tomography (QST) is an important and challenging task in the field of quantum information, which has attracted a lot of attentions in recent years. Machine learning models can provide a classical representation of the quantum state after trained on the measurement outcomes, which are part of effective techniques to solve QST problem. In this work, we use a variational autoencoder (VAE) to learn the measurement distribution of two quantum states generated by MPS circuits. We first consider the Greenberger–Horne–Zeilinger (GHZ) state which can be generated by a simple MPS circuit. Simulation results show that a VAE can reconstruct 3- to 8-qubit GHZ states with a high fidelity, i.e., 0.99, and is robust to depolarizing noise. The minimum number ([Formula: see text]) of training samples required to reconstruct the GHZ state up to 0.99 fidelity scales approximately linearly with the number of qubits ([Formula: see text]). However, for the quantum state generated by a complex MPS circuit, [Formula: see text] increases exponentially with [Formula: see text], especially for the quantum state with high entanglement entropy.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.