A. Fügenschuh, Daniel Müllenstedt, Johannes Schmidt
{"title":"无人机飞行计划","authors":"A. Fügenschuh, Daniel Müllenstedt, Johannes Schmidt","doi":"10.5711/1082598326349","DOIUrl":null,"url":null,"abstract":"We formulate the mission planning problem for a fleet of unmanned aerial vehicles (UAVs) as a mixed-integer nonlinear programming problem (MINLP). The problem asks for a selection of targets from a list to the UAVs, and trajectories that visit the chosen targets. To be feasible, a trajectory must pass each target at a desired distance and within a certain time window, obstacles or regions of high risk must be avoided, and the fuel limitations must be obeyed. An optimal trajectory maximizes the sum of values of all targets that can be visited, and as a secondary goal, conducts the mission in the shortest possible time. In order to obtain numerical solutions to this model, we approximate the MINLP by an mixed-integer linear program (MILP), and apply state-of-the-art solvers (Cplex, Gurobi) to the latter on a set of test instances.","PeriodicalId":54242,"journal":{"name":"Military Operations Research","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Flight Planning for Unmanned Aerial Vehicles\",\"authors\":\"A. Fügenschuh, Daniel Müllenstedt, Johannes Schmidt\",\"doi\":\"10.5711/1082598326349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate the mission planning problem for a fleet of unmanned aerial vehicles (UAVs) as a mixed-integer nonlinear programming problem (MINLP). The problem asks for a selection of targets from a list to the UAVs, and trajectories that visit the chosen targets. To be feasible, a trajectory must pass each target at a desired distance and within a certain time window, obstacles or regions of high risk must be avoided, and the fuel limitations must be obeyed. An optimal trajectory maximizes the sum of values of all targets that can be visited, and as a secondary goal, conducts the mission in the shortest possible time. In order to obtain numerical solutions to this model, we approximate the MINLP by an mixed-integer linear program (MILP), and apply state-of-the-art solvers (Cplex, Gurobi) to the latter on a set of test instances.\",\"PeriodicalId\":54242,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.5711/1082598326349\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.5711/1082598326349","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
We formulate the mission planning problem for a fleet of unmanned aerial vehicles (UAVs) as a mixed-integer nonlinear programming problem (MINLP). The problem asks for a selection of targets from a list to the UAVs, and trajectories that visit the chosen targets. To be feasible, a trajectory must pass each target at a desired distance and within a certain time window, obstacles or regions of high risk must be avoided, and the fuel limitations must be obeyed. An optimal trajectory maximizes the sum of values of all targets that can be visited, and as a secondary goal, conducts the mission in the shortest possible time. In order to obtain numerical solutions to this model, we approximate the MINLP by an mixed-integer linear program (MILP), and apply state-of-the-art solvers (Cplex, Gurobi) to the latter on a set of test instances.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.