具有等式和不等式约束的逆规划问题

IF 0.3 Q4 MATHEMATICS
A.K. Das , R. Jana , Deepmala
{"title":"具有等式和不等式约束的逆规划问题","authors":"A.K. Das ,&nbsp;R. Jana ,&nbsp;Deepmala","doi":"10.1016/j.trmi.2018.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>The class of functions is known as invex function (invariant convex) in the literature and the name derives from the fact that the convex like property of such functions remains invariant under all diffeomorphisms of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></math></span> A noteworthy result here is that the class of invex functions is precisely the class of differentiable functions whose stationary points are global minimizers. We revisit some of the important results obtained by Hanson and Martin and extend them to constrained minimization problems with equality constraints in addition to inequality constraints. We address some conditions by which a function is invex. We propose a result to solve pseudo-invex programming problem with the help of an equivalent programming problem.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 361-371"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.04.001","citationCount":"6","resultStr":"{\"title\":\"Invex programming problems with equality and inequality constraints\",\"authors\":\"A.K. Das ,&nbsp;R. Jana ,&nbsp;Deepmala\",\"doi\":\"10.1016/j.trmi.2018.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The class of functions is known as invex function (invariant convex) in the literature and the name derives from the fact that the convex like property of such functions remains invariant under all diffeomorphisms of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></math></span> A noteworthy result here is that the class of invex functions is precisely the class of differentiable functions whose stationary points are global minimizers. We revisit some of the important results obtained by Hanson and Martin and extend them to constrained minimization problems with equality constraints in addition to inequality constraints. We address some conditions by which a function is invex. We propose a result to solve pseudo-invex programming problem with the help of an equivalent programming problem.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 3\",\"pages\":\"Pages 361-371\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.04.001\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217301320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217301320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

这类函数在文献中被称为逆函数(不变凸),其名称来源于这类函数的类凸性质在Rn到Rn的所有微分同态下保持不变。这里有一个值得注意的结论,即逆函数类正是稳定点为全局极小值的可微函数类。我们重新审视了Hanson和Martin得到的一些重要结果,并将它们扩展到除了不等式约束之外还有等式约束的约束最小化问题。我们讨论了函数为倒幂的一些条件。利用一个等价规划问题,给出了求解伪逆规划问题的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invex programming problems with equality and inequality constraints

The class of functions is known as invex function (invariant convex) in the literature and the name derives from the fact that the convex like property of such functions remains invariant under all diffeomorphisms of Rn into Rn. A noteworthy result here is that the class of invex functions is precisely the class of differentiable functions whose stationary points are global minimizers. We revisit some of the important results obtained by Hanson and Martin and extend them to constrained minimization problems with equality constraints in addition to inequality constraints. We address some conditions by which a function is invex. We propose a result to solve pseudo-invex programming problem with the help of an equivalent programming problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信