{"title":"半线上二阶脉冲Dirichlet边值问题的变分方法","authors":"Meriem Djibaoui, T. Moussaoui","doi":"10.56754/0719-0646.2402.0227","DOIUrl":null,"url":null,"abstract":"In this paper, the existence of solutions for a second-order impulsive differential equation with a parameter on the half-line is investigated. Applying Lax-Milgram theorem, we deal with a linear Dirichlet impulsive problem, while the non-linear case is established by using standard results of critical point theory.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line\",\"authors\":\"Meriem Djibaoui, T. Moussaoui\",\"doi\":\"10.56754/0719-0646.2402.0227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the existence of solutions for a second-order impulsive differential equation with a parameter on the half-line is investigated. Applying Lax-Milgram theorem, we deal with a linear Dirichlet impulsive problem, while the non-linear case is established by using standard results of critical point theory.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2402.0227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2402.0227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line
In this paper, the existence of solutions for a second-order impulsive differential equation with a parameter on the half-line is investigated. Applying Lax-Milgram theorem, we deal with a linear Dirichlet impulsive problem, while the non-linear case is established by using standard results of critical point theory.