中心Lyapunov指数的刚性与$su$-可积性

IF 1.1 3区 数学 Q1 MATHEMATICS
Shaobo Gan, Yi Shi
{"title":"中心Lyapunov指数的刚性与$su$-可积性","authors":"Shaobo Gan, Yi Shi","doi":"10.4171/cmh/497","DOIUrl":null,"url":null,"abstract":"Let $f$ be a conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism $A$ on $\\mathbb{T}^3$. We show that the stable and unstable bundles of $f$ are jointly integrable if and only if every periodic point of $f$ admits the same center Lyapunov exponent with $A$. In particular, $f$ is Anosov. Thus every conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism on $\\mathbb{T}^3$, is ergodic. This proves the Ergodic Conjecture proposed by Hertz-Hertz-Ures on $\\mathbb{T}^3$.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/cmh/497","citationCount":"13","resultStr":"{\"title\":\"Rigidity of center Lyapunov exponents and $su$-integrability\",\"authors\":\"Shaobo Gan, Yi Shi\",\"doi\":\"10.4171/cmh/497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f$ be a conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism $A$ on $\\\\mathbb{T}^3$. We show that the stable and unstable bundles of $f$ are jointly integrable if and only if every periodic point of $f$ admits the same center Lyapunov exponent with $A$. In particular, $f$ is Anosov. Thus every conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism on $\\\\mathbb{T}^3$, is ergodic. This proves the Ergodic Conjecture proposed by Hertz-Hertz-Ures on $\\\\mathbb{T}^3$.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/cmh/497\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/497\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/497","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

摘要

设$f$是一个保守的部分双曲微分同构,它与$\mathbb{T}^3$上的Anosov自同构$ a $同伦。证明了f$的稳定束和不稳定束是联合可积的当且仅当f$的每个周期点与A$具有相同的中心Lyapunov指数。特别地,$f$是Anosov。因此,每一个与$\mathbb{T}^3$上的Anosov自同构同伦的保守的部分双曲微分同构都是遍历的。这证明了Hertz-Hertz-Ures在$\mathbb{T}^3$上提出的遍历猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of center Lyapunov exponents and $su$-integrability
Let $f$ be a conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism $A$ on $\mathbb{T}^3$. We show that the stable and unstable bundles of $f$ are jointly integrable if and only if every periodic point of $f$ admits the same center Lyapunov exponent with $A$. In particular, $f$ is Anosov. Thus every conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism on $\mathbb{T}^3$, is ergodic. This proves the Ergodic Conjecture proposed by Hertz-Hertz-Ures on $\mathbb{T}^3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信