{"title":"中心Lyapunov指数的刚性与$su$-可积性","authors":"Shaobo Gan, Yi Shi","doi":"10.4171/cmh/497","DOIUrl":null,"url":null,"abstract":"Let $f$ be a conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism $A$ on $\\mathbb{T}^3$. We show that the stable and unstable bundles of $f$ are jointly integrable if and only if every periodic point of $f$ admits the same center Lyapunov exponent with $A$. In particular, $f$ is Anosov. Thus every conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism on $\\mathbb{T}^3$, is ergodic. This proves the Ergodic Conjecture proposed by Hertz-Hertz-Ures on $\\mathbb{T}^3$.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/cmh/497","citationCount":"13","resultStr":"{\"title\":\"Rigidity of center Lyapunov exponents and $su$-integrability\",\"authors\":\"Shaobo Gan, Yi Shi\",\"doi\":\"10.4171/cmh/497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f$ be a conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism $A$ on $\\\\mathbb{T}^3$. We show that the stable and unstable bundles of $f$ are jointly integrable if and only if every periodic point of $f$ admits the same center Lyapunov exponent with $A$. In particular, $f$ is Anosov. Thus every conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism on $\\\\mathbb{T}^3$, is ergodic. This proves the Ergodic Conjecture proposed by Hertz-Hertz-Ures on $\\\\mathbb{T}^3$.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/cmh/497\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/497\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/497","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13
摘要
设$f$是一个保守的部分双曲微分同构,它与$\mathbb{T}^3$上的Anosov自同构$ a $同伦。证明了f$的稳定束和不稳定束是联合可积的当且仅当f$的每个周期点与A$具有相同的中心Lyapunov指数。特别地,$f$是Anosov。因此,每一个与$\mathbb{T}^3$上的Anosov自同构同伦的保守的部分双曲微分同构都是遍历的。这证明了Hertz-Hertz-Ures在$\mathbb{T}^3$上提出的遍历猜想。
Rigidity of center Lyapunov exponents and $su$-integrability
Let $f$ be a conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism $A$ on $\mathbb{T}^3$. We show that the stable and unstable bundles of $f$ are jointly integrable if and only if every periodic point of $f$ admits the same center Lyapunov exponent with $A$. In particular, $f$ is Anosov. Thus every conservative partially hyperbolic diffeomorphism, which is homotopic to an Anosov automorphism on $\mathbb{T}^3$, is ergodic. This proves the Ergodic Conjecture proposed by Hertz-Hertz-Ures on $\mathbb{T}^3$.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.