带范围限制的$C^2$插值

IF 1.3 2区 数学 Q1 MATHEMATICS
C. Fefferman, Fushuai Jiang, Garving K. Luli
{"title":"带范围限制的$C^2$插值","authors":"C. Fefferman, Fushuai Jiang, Garving K. Luli","doi":"10.4171/rmi/1353","DOIUrl":null,"url":null,"abstract":"Given −∞ < λ < Λ < ∞, E ⊂ R finite, and f : E → [λ,Λ], how can we extend f to a C(R) function F such that λ ≤ F ≤ Λ and ‖F‖Cm(Rn) is within a constant multiple of the least possible, with the constant depending only on m and n? In this paper, we provide the solution to the problem for the case m = 2. Specifically, we construct a (parameter-dependent, nonlinear) C(R) extension operator that preserves the range [λ,Λ], and we provide an efficient algorithm to compute such an extension using O(N logN) operations, where N = #(E).","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"$C^2$ interpolation with range restriction\",\"authors\":\"C. Fefferman, Fushuai Jiang, Garving K. Luli\",\"doi\":\"10.4171/rmi/1353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given −∞ < λ < Λ < ∞, E ⊂ R finite, and f : E → [λ,Λ], how can we extend f to a C(R) function F such that λ ≤ F ≤ Λ and ‖F‖Cm(Rn) is within a constant multiple of the least possible, with the constant depending only on m and n? In this paper, we provide the solution to the problem for the case m = 2. Specifically, we construct a (parameter-dependent, nonlinear) C(R) extension operator that preserves the range [λ,Λ], and we provide an efficient algorithm to compute such an extension using O(N logN) operations, where N = #(E).\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1353\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1353","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

给定−∞< λ < Λ <∞,E∧R有限,f: E→[λ,Λ],我们如何将f扩展到C(R)函数f,使λ≤f≤Λ且‖f‖Cm(Rn)在最小可能的常数倍内,且该常数仅与m和n有关?本文给出了m = 2情况下问题的解。具体来说,我们构造了一个(参数相关的,非线性的)C(R)扩展算子,它保留了范围[λ,Λ],并且我们提供了一个使用O(N logN)运算来计算这种扩展的有效算法,其中N = #(E)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$C^2$ interpolation with range restriction
Given −∞ < λ < Λ < ∞, E ⊂ R finite, and f : E → [λ,Λ], how can we extend f to a C(R) function F such that λ ≤ F ≤ Λ and ‖F‖Cm(Rn) is within a constant multiple of the least possible, with the constant depending only on m and n? In this paper, we provide the solution to the problem for the case m = 2. Specifically, we construct a (parameter-dependent, nonlinear) C(R) extension operator that preserves the range [λ,Λ], and we provide an efficient algorithm to compute such an extension using O(N logN) operations, where N = #(E).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信