通过基于机器学习的光谱图识别促进动物保护:YOLOv5目标检测研究

Badrul Huda Husain, T. Osawa
{"title":"通过基于机器学习的光谱图识别促进动物保护:YOLOv5目标检测研究","authors":"Badrul Huda Husain, T. Osawa","doi":"10.21776/ub.jsal.2023.010.02.2","DOIUrl":null,"url":null,"abstract":"The protection and monitoring of fauna species are essential for maintaining biodiversity and ensuring the sustainability of ecosystems. Traditional methods of fauna conservation and habitat monitoring rely heavily on manual observation and data collection, which can be time-consuming, and labor-intensive. In recent years, the application of machine learning techniques, such as object detection, has shown great potential in automating the identification of fauna species. In this study, we propose an approach to advancing fauna conservation through the utilization of machine learning-based spectrogram recognition. Specifically, we employ an object detection algorithm, YOLOv5, to detect and classify fauna species from spectrogram images obtained from acoustic recordings. The spectrograms provide a visual representation of audio signals, capturing distinct patterns and characteristics unique to different fauna species. Through extensive experimentation and evaluation, our approach achieved promising results, demonstrating a precision of 0.95, recall of 0.98, F1 score of 0.91, and mean Average Precision (mAP) of 0.934. These performance metrics indicate a high level of accuracy and reliability in fauna species detection. By automating the identification process, our approach provides a scalable solution for monitoring fauna populations over large geographical areas and enables the collection of comprehensive data, facilitating better decision-making and targeted conservation strategies.","PeriodicalId":34173,"journal":{"name":"Jurnal Sumberdaya Alam dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Fauna Conservation through Machine Learning-Based Spectrogram Recognition: A Study on Object Detection using YOLOv5\",\"authors\":\"Badrul Huda Husain, T. Osawa\",\"doi\":\"10.21776/ub.jsal.2023.010.02.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The protection and monitoring of fauna species are essential for maintaining biodiversity and ensuring the sustainability of ecosystems. Traditional methods of fauna conservation and habitat monitoring rely heavily on manual observation and data collection, which can be time-consuming, and labor-intensive. In recent years, the application of machine learning techniques, such as object detection, has shown great potential in automating the identification of fauna species. In this study, we propose an approach to advancing fauna conservation through the utilization of machine learning-based spectrogram recognition. Specifically, we employ an object detection algorithm, YOLOv5, to detect and classify fauna species from spectrogram images obtained from acoustic recordings. The spectrograms provide a visual representation of audio signals, capturing distinct patterns and characteristics unique to different fauna species. Through extensive experimentation and evaluation, our approach achieved promising results, demonstrating a precision of 0.95, recall of 0.98, F1 score of 0.91, and mean Average Precision (mAP) of 0.934. These performance metrics indicate a high level of accuracy and reliability in fauna species detection. By automating the identification process, our approach provides a scalable solution for monitoring fauna populations over large geographical areas and enables the collection of comprehensive data, facilitating better decision-making and targeted conservation strategies.\",\"PeriodicalId\":34173,\"journal\":{\"name\":\"Jurnal Sumberdaya Alam dan Lingkungan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sumberdaya Alam dan Lingkungan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21776/ub.jsal.2023.010.02.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sumberdaya Alam dan Lingkungan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.jsal.2023.010.02.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

保护和监测动物物种对于维持生物多样性和确保生态系统的可持续性至关重要。传统的动物保护和栖息地监测方法严重依赖于人工观察和数据收集,这既耗时又费力。近年来,机器学习技术的应用,如物体检测,在动物物种的自动化识别方面显示出巨大的潜力。在这项研究中,我们提出了一种利用基于机器学习的光谱图识别来推进动物保护的方法。具体来说,我们采用了一种目标检测算法YOLOv5,从声学记录中获得的光谱图图像中检测和分类动物物种。声谱图提供了音频信号的视觉表现,捕捉了不同动物物种特有的独特模式和特征。通过大量的实验和评估,我们的方法取得了令人满意的结果,精度为0.95,召回率为0.98,F1分数为0.91,平均平均精度(mAP)为0.934。这些性能指标表明动物物种检测的准确性和可靠性很高。通过自动化识别过程,我们的方法为监测大地理区域的动物种群提供了可扩展的解决方案,并能够收集全面的数据,促进更好的决策和有针对性的保护策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Fauna Conservation through Machine Learning-Based Spectrogram Recognition: A Study on Object Detection using YOLOv5
The protection and monitoring of fauna species are essential for maintaining biodiversity and ensuring the sustainability of ecosystems. Traditional methods of fauna conservation and habitat monitoring rely heavily on manual observation and data collection, which can be time-consuming, and labor-intensive. In recent years, the application of machine learning techniques, such as object detection, has shown great potential in automating the identification of fauna species. In this study, we propose an approach to advancing fauna conservation through the utilization of machine learning-based spectrogram recognition. Specifically, we employ an object detection algorithm, YOLOv5, to detect and classify fauna species from spectrogram images obtained from acoustic recordings. The spectrograms provide a visual representation of audio signals, capturing distinct patterns and characteristics unique to different fauna species. Through extensive experimentation and evaluation, our approach achieved promising results, demonstrating a precision of 0.95, recall of 0.98, F1 score of 0.91, and mean Average Precision (mAP) of 0.934. These performance metrics indicate a high level of accuracy and reliability in fauna species detection. By automating the identification process, our approach provides a scalable solution for monitoring fauna populations over large geographical areas and enables the collection of comprehensive data, facilitating better decision-making and targeted conservation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信