基于多模态学习的汽车保险欺诈检测

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiaxi Yang, Kui Chen, Kai Ding, Chongning Na, Meng Wang
{"title":"基于多模态学习的汽车保险欺诈检测","authors":"Jiaxi Yang, Kui Chen, Kai Ding, Chongning Na, Meng Wang","doi":"10.1162/dint_a_00191","DOIUrl":null,"url":null,"abstract":"ABSTRACT In recent years, feature engineering-based machine learning models have made significant progress in auto insurance fraud detection. However, most models or systems focused only on structural data and did not utilize multi-modal data to improve fraud detection efficiency. To solve this problem, we adapt both natural language processing and computer vision techniques to our knowledge-based algorithm and construct an Auto Insurance Multi-modal Learning (AIML) framework. We then apply AIML to detect fraud behavior in auto insurance cases with data from real scenarios and conduct experiments to examine the improvement in model performance with multi-modal data compared to baseline model with structural data only. A self-designed Semi-Auto Feature Engineer (SAFE) algorithm to process auto insurance data and a visual data processing framework are embedded within AIML. Results show that AIML substantially improves the model performance in detecting fraud behavior compared to models that only use structural data.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"388-412"},"PeriodicalIF":1.3000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto Insurance Fraud Detection with Multimodal Learning\",\"authors\":\"Jiaxi Yang, Kui Chen, Kai Ding, Chongning Na, Meng Wang\",\"doi\":\"10.1162/dint_a_00191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In recent years, feature engineering-based machine learning models have made significant progress in auto insurance fraud detection. However, most models or systems focused only on structural data and did not utilize multi-modal data to improve fraud detection efficiency. To solve this problem, we adapt both natural language processing and computer vision techniques to our knowledge-based algorithm and construct an Auto Insurance Multi-modal Learning (AIML) framework. We then apply AIML to detect fraud behavior in auto insurance cases with data from real scenarios and conduct experiments to examine the improvement in model performance with multi-modal data compared to baseline model with structural data only. A self-designed Semi-Auto Feature Engineer (SAFE) algorithm to process auto insurance data and a visual data processing framework are embedded within AIML. Results show that AIML substantially improves the model performance in detecting fraud behavior compared to models that only use structural data.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\"5 1\",\"pages\":\"388-412\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/dint_a_00191\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00191","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要近年来,基于特征工程的机器学习模型在车险欺诈检测方面取得了重大进展。然而,大多数模型或系统只关注结构数据,而没有利用多模态数据来提高欺诈检测效率。为了解决这个问题,我们将自然语言处理和计算机视觉技术与基于知识的算法相结合,并构建了一个自动保险多模式学习(AIML)框架。然后,我们将AIML应用于使用真实场景中的数据检测汽车保险案件中的欺诈行为,并进行实验来检查与仅使用结构数据的基线模型相比,使用多模态数据的模型性能的改善。在AIML中嵌入了自行设计的半自动特征工程师(SAFE)算法和可视化的数据处理框架。结果表明,与仅使用结构数据的模型相比,AIML显著提高了模型在检测欺诈行为方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto Insurance Fraud Detection with Multimodal Learning
ABSTRACT In recent years, feature engineering-based machine learning models have made significant progress in auto insurance fraud detection. However, most models or systems focused only on structural data and did not utilize multi-modal data to improve fraud detection efficiency. To solve this problem, we adapt both natural language processing and computer vision techniques to our knowledge-based algorithm and construct an Auto Insurance Multi-modal Learning (AIML) framework. We then apply AIML to detect fraud behavior in auto insurance cases with data from real scenarios and conduct experiments to examine the improvement in model performance with multi-modal data compared to baseline model with structural data only. A self-designed Semi-Auto Feature Engineer (SAFE) algorithm to process auto insurance data and a visual data processing framework are embedded within AIML. Results show that AIML substantially improves the model performance in detecting fraud behavior compared to models that only use structural data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信