Schrödinger-Langevin方程的另一个解

Q4 Multidisciplinary
Jairo Alonso Mendoza-Suárez, Juan Carlos López-Carreño, Rosalba Mendoza-Suárez
{"title":"Schrödinger-Langevin方程的另一个解","authors":"Jairo Alonso Mendoza-Suárez, Juan Carlos López-Carreño, Rosalba Mendoza-Suárez","doi":"10.22507/rli.v18n1a2","DOIUrl":null,"url":null,"abstract":"Introduction: an alternative solution to the Schrodinger-Langevin equation is presented, where the temporal dependence is explained, assuming a Coulomb potential. Finally, the trajectory equations are found. Objective: in this paper we contribute by presenting a detailed and simple solution of the Schrödinger-Langevin equation for a Coulomb potential. Materials and Methods: using an appropriate ansatz, we solve the Schrödinger-Langevin equation, finding the expected values of position and moment. Results: a simple method was presented to find the expected position and moment values in the Schrödinger-Langevin equation, the ansatz used to find these solutions allows the model to be generalized in a certain way to electric potentials and harmonic oscillators. Conclusions: the model used to solve the Schrödinger-Langevin equation, allowed to find the expected values of position and moment of a particle in a Coulomb potential, the temporal dependence of such solutions is made explicit, which allows finding the path equations of the particles.","PeriodicalId":38613,"journal":{"name":"Revista Lasallista de Investigacion","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Another Solution to the Schrödinger-Langevin Equation\",\"authors\":\"Jairo Alonso Mendoza-Suárez, Juan Carlos López-Carreño, Rosalba Mendoza-Suárez\",\"doi\":\"10.22507/rli.v18n1a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: an alternative solution to the Schrodinger-Langevin equation is presented, where the temporal dependence is explained, assuming a Coulomb potential. Finally, the trajectory equations are found. Objective: in this paper we contribute by presenting a detailed and simple solution of the Schrödinger-Langevin equation for a Coulomb potential. Materials and Methods: using an appropriate ansatz, we solve the Schrödinger-Langevin equation, finding the expected values of position and moment. Results: a simple method was presented to find the expected position and moment values in the Schrödinger-Langevin equation, the ansatz used to find these solutions allows the model to be generalized in a certain way to electric potentials and harmonic oscillators. Conclusions: the model used to solve the Schrödinger-Langevin equation, allowed to find the expected values of position and moment of a particle in a Coulomb potential, the temporal dependence of such solutions is made explicit, which allows finding the path equations of the particles.\",\"PeriodicalId\":38613,\"journal\":{\"name\":\"Revista Lasallista de Investigacion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Lasallista de Investigacion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22507/rli.v18n1a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Lasallista de Investigacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22507/rli.v18n1a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

引言:给出了薛定谔-朗之万方程的一种替代解,其中解释了时间依赖性,假设库仑势。最后,建立了弹道方程。目的:在本文中,我们提出了库仑势Schrödinger-Langevin方程的一个详细而简单的解。材料和方法:使用适当的模拟,我们求解Schrödinger-Langevin方程,找到位置和力矩的期望值。结果:提出了一种简单的方法来求解Schrödinger-Langevin方程中的期望位置和力矩值,用于求解这些解的模拟使该模型能够以某种方式推广到电势和谐振子。结论:用于求解Schrödinger-Langevin方程的模型,可以找到库仑势中粒子的位置和力矩的期望值,这些解的时间依赖性是明确的,可以找到粒子的路径方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another Solution to the Schrödinger-Langevin Equation
Introduction: an alternative solution to the Schrodinger-Langevin equation is presented, where the temporal dependence is explained, assuming a Coulomb potential. Finally, the trajectory equations are found. Objective: in this paper we contribute by presenting a detailed and simple solution of the Schrödinger-Langevin equation for a Coulomb potential. Materials and Methods: using an appropriate ansatz, we solve the Schrödinger-Langevin equation, finding the expected values of position and moment. Results: a simple method was presented to find the expected position and moment values in the Schrödinger-Langevin equation, the ansatz used to find these solutions allows the model to be generalized in a certain way to electric potentials and harmonic oscillators. Conclusions: the model used to solve the Schrödinger-Langevin equation, allowed to find the expected values of position and moment of a particle in a Coulomb potential, the temporal dependence of such solutions is made explicit, which allows finding the path equations of the particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Lasallista de Investigacion
Revista Lasallista de Investigacion Multidisciplinary-Multidisciplinary
CiteScore
0.40
自引率
0.00%
发文量
36
期刊介绍: La Revista Lasallista de Investigación (ISSN: 1794 – 4449) – (ISSN (en línea): 2256 – 3938) es una revista con cobertura nacional e internacional que publica artículos en el el área de las Ciencias naturales, Ciencias Humanas y Sociales, entre otras, relativos a la investigación, desde diferentes disciplinas, siendo sometida toda publicación a verificación y cumplimiento de criterios de calidad y éticos. Es una publicación disciplinar y multidisciplinar editada por la Corporación Universitaria Lasallista, desde 2004 y está orientada a académicos, investigadores y científicos interesados en difundir su producción. Tiene versión impresa y electrónica de acceso abierto en la dirección http://repository.lasallista.edu.co:8080/ojs/index.php/rldi. Cabe anotar que los contenidos publicados en la revista son de libre acceso y no requieren ningún tipo de pago para su consulta. Para mayor Información comunicarse en la Corporación Universitaria Lasallista, PBX (057) 320 19 99 ext. 156. En la Revista se encuentran artículos en español, inglés y portugués, siendo publicados de manera eficiente artículos de investigación científica tecnológica, artículos de revisión, artículos breves, reportes de caso, cartas al editor, artículos de reflexión derivados de investigación, entre otros. La administración de los artículos se realiza en la plataforma de gestión de publicaciones (Open Journal System).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信