无限图因子的Ramsey上密度

IF 0.6 Q3 MATHEMATICS
J. Balogh, Ander Lamaison
{"title":"无限图因子的Ramsey上密度","authors":"J. Balogh, Ander Lamaison","doi":"10.1215/00192082-10450499","DOIUrl":null,"url":null,"abstract":"The study of upper density problems on Ramsey theory was initiated by Erdős and Galvin in 1993. In this paper we are concerned with the following problem: given a fixed finite graph $F$, what is the largest value of $\\lambda$ such that every 2-edge-coloring of the complete graph on $\\mathbb{N}$ contains a monochromatic infinite $F$-factor whose vertex set has upper density at least $\\lambda$? \nHere we prove a new lower bound for this problem. For some choices of $F$, including cliques and odd cycles, this new bound is sharp, as it matches an older upper bound. For the particular case where $F$ is a triangle, we also give an explicit lower bound of $1-\\frac{1}{\\sqrt{7}}=0.62203\\dots$, improving the previous best bound of 3/5.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ramsey upper density of infinite graph factors\",\"authors\":\"J. Balogh, Ander Lamaison\",\"doi\":\"10.1215/00192082-10450499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of upper density problems on Ramsey theory was initiated by Erdős and Galvin in 1993. In this paper we are concerned with the following problem: given a fixed finite graph $F$, what is the largest value of $\\\\lambda$ such that every 2-edge-coloring of the complete graph on $\\\\mathbb{N}$ contains a monochromatic infinite $F$-factor whose vertex set has upper density at least $\\\\lambda$? \\nHere we prove a new lower bound for this problem. For some choices of $F$, including cliques and odd cycles, this new bound is sharp, as it matches an older upper bound. For the particular case where $F$ is a triangle, we also give an explicit lower bound of $1-\\\\frac{1}{\\\\sqrt{7}}=0.62203\\\\dots$, improving the previous best bound of 3/5.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10450499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10450499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

基于拉姆齐理论的上密度问题的研究是由埃尔德斯和加尔文于1993年发起的。在本文中,我们关注以下问题:给定一个固定的有限图$F$,$\lambda$的最大值是多少,使得$\mathbb{N}$上的完备图的每一个2-边着色都包含一个单色无限$F$因子,其顶点集的上密度至少为$\lambda$?在这里我们证明了这个问题的一个新的下界。对于$F$的一些选择,包括派系和奇数周期,这个新的上界是尖锐的,因为它与旧的上界相匹配。对于$F$是三角形的特殊情况,我们还给出了$1-\frac{1}{\sqrt{7}}=0.62203\dots$的显式下界,改进了先前3/5的最佳界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramsey upper density of infinite graph factors
The study of upper density problems on Ramsey theory was initiated by Erdős and Galvin in 1993. In this paper we are concerned with the following problem: given a fixed finite graph $F$, what is the largest value of $\lambda$ such that every 2-edge-coloring of the complete graph on $\mathbb{N}$ contains a monochromatic infinite $F$-factor whose vertex set has upper density at least $\lambda$? Here we prove a new lower bound for this problem. For some choices of $F$, including cliques and odd cycles, this new bound is sharp, as it matches an older upper bound. For the particular case where $F$ is a triangle, we also give an explicit lower bound of $1-\frac{1}{\sqrt{7}}=0.62203\dots$, improving the previous best bound of 3/5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信