超椭圆Lefschetz纤维上的分支覆盖物和铅笔

Pub Date : 2022-07-31 DOI:10.2969/jmsj/90089008
Terry Fuller
{"title":"超椭圆Lefschetz纤维上的分支覆盖物和铅笔","authors":"Terry Fuller","doi":"10.2969/jmsj/90089008","DOIUrl":null,"url":null,"abstract":"Generalizing work of I. Baykur, K. Hayano, and N. Monden (arXiv:1903.02906), we construct infinite families of symplectic 4-dimensional manifolds, obtained as total spaces of Lefschetz pencils constructed by explicit monodromy factorizations. Then, generalizing work of the author (arXiv:2108.04868), we show that each of these manifolds is diffeomorphic to a complex surface that is a fiber sum formed from two standard examples of hyperelliptic Lefschetz fibrations. Consequently, we see that these hyperelliptic Lefschetz fibrations, as well as all fiber sums of them, admit an infinite family of explicitly described Lefschetz pencils, which we observe are different from families formed by the degree doubling procedure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branched covers and pencils on hyperelliptic Lefschetz fibrations\",\"authors\":\"Terry Fuller\",\"doi\":\"10.2969/jmsj/90089008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalizing work of I. Baykur, K. Hayano, and N. Monden (arXiv:1903.02906), we construct infinite families of symplectic 4-dimensional manifolds, obtained as total spaces of Lefschetz pencils constructed by explicit monodromy factorizations. Then, generalizing work of the author (arXiv:2108.04868), we show that each of these manifolds is diffeomorphic to a complex surface that is a fiber sum formed from two standard examples of hyperelliptic Lefschetz fibrations. Consequently, we see that these hyperelliptic Lefschetz fibrations, as well as all fiber sums of them, admit an infinite family of explicitly described Lefschetz pencils, which we observe are different from families formed by the degree doubling procedure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/90089008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/90089008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推广了I.Baykur、K.Hayano和N.Monden(arXiv:1903.02906)的工作,我们构造了辛4维流形的无限族,这些流形是由显式单调因子分解构造的Lefschetz笔的总空间。然后,推广作者的工作(arXiv:2108.04868),我们证明了这些流形中的每一个对于复曲面都是微分同胚的,复曲面是由超椭圆Lefschetz纤维化的两个标准例子形成的纤维和。因此,我们看到这些超椭圆Lefschetz纤维,以及它们的所有纤维和,包含了一个明确描述的Lefschetzpencils的无限族,我们观察到它与通过倍度过程形成的族不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Branched covers and pencils on hyperelliptic Lefschetz fibrations
Generalizing work of I. Baykur, K. Hayano, and N. Monden (arXiv:1903.02906), we construct infinite families of symplectic 4-dimensional manifolds, obtained as total spaces of Lefschetz pencils constructed by explicit monodromy factorizations. Then, generalizing work of the author (arXiv:2108.04868), we show that each of these manifolds is diffeomorphic to a complex surface that is a fiber sum formed from two standard examples of hyperelliptic Lefschetz fibrations. Consequently, we see that these hyperelliptic Lefschetz fibrations, as well as all fiber sums of them, admit an infinite family of explicitly described Lefschetz pencils, which we observe are different from families formed by the degree doubling procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信