三维非均匀介质热方程的格林函数

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
C. Cheng, Tai-Ping Liu, Shih-Hsien Yu
{"title":"三维非均匀介质热方程的格林函数","authors":"C. Cheng, Tai-Ping Liu, Shih-Hsien Yu","doi":"10.1080/03605302.2022.2116717","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of the present paper is to study the structure of Green’s function for heat equation in several spatial dimensions and with rough heat conductivity coefficient. We take the heat conductivity coefficient to be of bounded variation in the x direction and study the dispersion in the (y, z) direction. The goal is to understand the coupling of dissipation across rough heat conductivity and the multi-dimensional dispersion in the Green’s function A series of exponential functions of path integral with coefficients over a field of complex analytic functions around imaginary axis are formulated in the Laplace and Fourier transforms variables. The Green’s function in the transformed variables is written as the sum of these integrals over random paths. The integral over a random path is rearranged through the reflection property over a variation of heat conductivity coefficient and become a simple form in terms of path phase and amplitude. The complex analytic and combinatorics method is then used to yield a precise pointwise structure of the Green’s function in the physical domain","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green’s function of heat equation for heterogeneous media in 3-D\",\"authors\":\"C. Cheng, Tai-Ping Liu, Shih-Hsien Yu\",\"doi\":\"10.1080/03605302.2022.2116717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of the present paper is to study the structure of Green’s function for heat equation in several spatial dimensions and with rough heat conductivity coefficient. We take the heat conductivity coefficient to be of bounded variation in the x direction and study the dispersion in the (y, z) direction. The goal is to understand the coupling of dissipation across rough heat conductivity and the multi-dimensional dispersion in the Green’s function A series of exponential functions of path integral with coefficients over a field of complex analytic functions around imaginary axis are formulated in the Laplace and Fourier transforms variables. The Green’s function in the transformed variables is written as the sum of these integrals over random paths. The integral over a random path is rearranged through the reflection property over a variation of heat conductivity coefficient and become a simple form in terms of path phase and amplitude. The complex analytic and combinatorics method is then used to yield a precise pointwise structure of the Green’s function in the physical domain\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2116717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2116717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是研究具有粗糙导热系数的热方程在几个空间维度上的格林函数的结构。我们假定导热系数在x方向上具有有界变化,并研究了在(y,z)方向上的色散。目标是理解格林函数中粗糙导热率耗散和多维色散的耦合。在拉普拉斯和傅立叶变换变量中,在虚轴周围的复解析函数场上,一系列具有系数的路径积分指数函数被公式化。变换变量中的格林函数被写成随机路径上这些积分的和。随机路径上的积分通过导热系数变化上的反射特性重新排列,并成为路径相位和振幅的简单形式。然后使用复分析和组合学方法在物理域中产生格林函数的精确逐点结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green’s function of heat equation for heterogeneous media in 3-D
Abstract The purpose of the present paper is to study the structure of Green’s function for heat equation in several spatial dimensions and with rough heat conductivity coefficient. We take the heat conductivity coefficient to be of bounded variation in the x direction and study the dispersion in the (y, z) direction. The goal is to understand the coupling of dissipation across rough heat conductivity and the multi-dimensional dispersion in the Green’s function A series of exponential functions of path integral with coefficients over a field of complex analytic functions around imaginary axis are formulated in the Laplace and Fourier transforms variables. The Green’s function in the transformed variables is written as the sum of these integrals over random paths. The integral over a random path is rearranged through the reflection property over a variation of heat conductivity coefficient and become a simple form in terms of path phase and amplitude. The complex analytic and combinatorics method is then used to yield a precise pointwise structure of the Green’s function in the physical domain
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信