实线上耗散KdV方程的Sharp适定性和病态性结果

IF 0.7 Q3 MATHEMATICS, APPLIED
X. Carvajal, P. Gamboa, Raphael Santos
{"title":"实线上耗散KdV方程的Sharp适定性和病态性结果","authors":"X. Carvajal, P. Gamboa, Raphael Santos","doi":"10.7153/dea-2021-13-24","DOIUrl":null,"url":null,"abstract":"This work is concerned about the Cauchy problem for the following generalized KdV- Burgers equation \n% \n\\begin{equation*} \n\\left\\{\\begin{array}{l} \n\\partial_tu+\\partial_x^3u+L_pu+u\\partial_xu=0, \nu(0,\\,x)=u_0(x). \n\\end{array} \n\\right. \n\\end{equation*} \n% \nwhere $L_p$ is a dissipative multiplicator operator. Using Besov-Bourgain Spaces, we establish a bilinear estimate and following the framework developed in Molinet, L. & Vento, S. (2011) we prove sharp global well-posedness in the Sobolev spaces $H^{-p/2}(I\\!\\!R)$ and sharp ill-posedness in $H^s(I\\!\\!R)$ when $s<-p/2$ with $p \\geq 2$.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Sharp well-posedness and ill-posedness results for dissipative KdV equations on the real line\",\"authors\":\"X. Carvajal, P. Gamboa, Raphael Santos\",\"doi\":\"10.7153/dea-2021-13-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is concerned about the Cauchy problem for the following generalized KdV- Burgers equation \\n% \\n\\\\begin{equation*} \\n\\\\left\\\\{\\\\begin{array}{l} \\n\\\\partial_tu+\\\\partial_x^3u+L_pu+u\\\\partial_xu=0, \\nu(0,\\\\,x)=u_0(x). \\n\\\\end{array} \\n\\\\right. \\n\\\\end{equation*} \\n% \\nwhere $L_p$ is a dissipative multiplicator operator. Using Besov-Bourgain Spaces, we establish a bilinear estimate and following the framework developed in Molinet, L. & Vento, S. (2011) we prove sharp global well-posedness in the Sobolev spaces $H^{-p/2}(I\\\\!\\\\!R)$ and sharp ill-posedness in $H^s(I\\\\!\\\\!R)$ when $s<-p/2$ with $p \\\\geq 2$.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2021-13-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2021-13-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了以下广义KdV- Burgers方程的柯西问题 % \begin{equation*} \left\{\begin{array}{l} \partial_tu+\partial_x^3u+L_pu+u\partial_xu=0, u(0,\,x)=u_0(x). \end{array} \right. \end{equation*} % where $L_p$ is a dissipative multiplicator operator. Using Besov-Bourgain Spaces, we establish a bilinear estimate and following the framework developed in Molinet, L. & Vento, S. (2011) we prove sharp global well-posedness in the Sobolev spaces $H^{-p/2}(I\!\!R)$ and sharp ill-posedness in $H^s(I\!\!R)$ when $s<-p/2$ with $p \geq 2$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp well-posedness and ill-posedness results for dissipative KdV equations on the real line
This work is concerned about the Cauchy problem for the following generalized KdV- Burgers equation % \begin{equation*} \left\{\begin{array}{l} \partial_tu+\partial_x^3u+L_pu+u\partial_xu=0, u(0,\,x)=u_0(x). \end{array} \right. \end{equation*} % where $L_p$ is a dissipative multiplicator operator. Using Besov-Bourgain Spaces, we establish a bilinear estimate and following the framework developed in Molinet, L. & Vento, S. (2011) we prove sharp global well-posedness in the Sobolev spaces $H^{-p/2}(I\!\!R)$ and sharp ill-posedness in $H^s(I\!\!R)$ when $s<-p/2$ with $p \geq 2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信