仿射Kac-Moody李代数的张量半群

IF 3.5 1区 数学 Q1 MATHEMATICS
N. Ressayre
{"title":"仿射Kac-Moody李代数的张量半群","authors":"N. Ressayre","doi":"10.1090/JAMS/975","DOIUrl":null,"url":null,"abstract":"<p>The support of the tensor product decomposition of integrable irreducible highest weight representations of a symmetrizable Kac-Moody Lie algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> defines a semigroup of triples of weights. Namely, given <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P Subscript plus\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>P</mml:mi>\n <mml:mo>+</mml:mo>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">P_+</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of dominant integral weights, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V left-parenthesis lamda right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">V(\\lambda )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> denotes the irreducible representation of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with highest weight <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We are interested in the <italic>tensor semigroup</italic> <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript double-struck upper N Baseline left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus Superscript 3 Baseline vertical-bar upper V left-parenthesis mu right-parenthesis subset-of upper V left-parenthesis lamda 1 right-parenthesis circled-times upper V left-parenthesis lamda 2 right-parenthesis EndSet comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msubsup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>+</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msubsup>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Gamma _{\\mathbb {N}}(\\mathfrak {g})≔\\{(\\lambda _1,\\lambda _2,\\mu )\\in P_{+}^3\\,|\\, V(\\mu )\\subset V(\\lambda _1)\\otimes V(\\lambda _2)\\}, \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n and in the <italic>tensor cone</italic> <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma left-parenthesis German g right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma (\\mathfrak {g})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it generates: <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus comma double-struck upper Q Superscript 3 Baseline vertical-bar there-exists upper N greater-than-or-equal-to 1 upper V left-parenthesis upper N mu right-parenthesis subset-of upper V left-parenthesis upper N lamda 1 right-parenthesis circled-times upper V left-parenthesis upper N lamda 2 right-parenthesis EndSet period\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msubsup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>+</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msubsup>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi mathvariant=\"normal\">∃<!-- ∃ --></mml:mi>\n <mml:mi>N</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mspace width=\"1em\" />\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Gamma (\\mathfrak {g})≔\\{(\\lambda _1,\\lambda _2,\\mu )\\in P_{+,{\\mathbb {Q}}}^3\\,|\\,\\exists N\\geq 1 \\quad V(N\\mu )\\subset V(N\\lambda _1)\\otimes V(N\\lambda _2)\\}. \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n Here, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P Subscript plus comma double-struck upper Q\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>+</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">P_{+,{\\mathb","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the tensor semigroup of affine Kac-Moody lie algebras\",\"authors\":\"N. Ressayre\",\"doi\":\"10.1090/JAMS/975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The support of the tensor product decomposition of integrable irreducible highest weight representations of a symmetrizable Kac-Moody Lie algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> defines a semigroup of triples of weights. Namely, given <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in the set <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P Subscript plus\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>P</mml:mi>\\n <mml:mo>+</mml:mo>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">P_+</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of dominant integral weights, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V left-parenthesis lamda right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">V(\\\\lambda )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> denotes the irreducible representation of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with highest weight <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We are interested in the <italic>tensor semigroup</italic> <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript double-struck upper N Baseline left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus Superscript 3 Baseline vertical-bar upper V left-parenthesis mu right-parenthesis subset-of upper V left-parenthesis lamda 1 right-parenthesis circled-times upper V left-parenthesis lamda 2 right-parenthesis EndSet comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≔</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msubsup>\\n <mml:mi>P</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>+</mml:mo>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msubsup>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\Gamma _{\\\\mathbb {N}}(\\\\mathfrak {g})≔\\\\{(\\\\lambda _1,\\\\lambda _2,\\\\mu )\\\\in P_{+}^3\\\\,|\\\\, V(\\\\mu )\\\\subset V(\\\\lambda _1)\\\\otimes V(\\\\lambda _2)\\\\}, \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n and in the <italic>tensor cone</italic> <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma left-parenthesis German g right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma (\\\\mathfrak {g})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> it generates: <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus comma double-struck upper Q Superscript 3 Baseline vertical-bar there-exists upper N greater-than-or-equal-to 1 upper V left-parenthesis upper N mu right-parenthesis subset-of upper V left-parenthesis upper N lamda 1 right-parenthesis circled-times upper V left-parenthesis upper N lamda 2 right-parenthesis EndSet period\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≔</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msubsup>\\n <mml:mi>P</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>+</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msubsup>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mi mathvariant=\\\"normal\\\">∃<!-- ∃ --></mml:mi>\\n <mml:mi>N</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mo>.</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\Gamma (\\\\mathfrak {g})≔\\\\{(\\\\lambda _1,\\\\lambda _2,\\\\mu )\\\\in P_{+,{\\\\mathbb {Q}}}^3\\\\,|\\\\,\\\\exists N\\\\geq 1 \\\\quad V(N\\\\mu )\\\\subset V(N\\\\lambda _1)\\\\otimes V(N\\\\lambda _2)\\\\}. \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n Here, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P Subscript plus comma double-struck upper Q\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>P</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>+</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">P_{+,{\\\\mathb\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/975\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/975","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

可对称Kac-Moody李代数g\mathfrak{g}的可积不可约最高权表示的张量积分解的支持定义了权的三元组的半群。也就是说,在主积分权的集合P+P+中给定λλ,V(λ)V(\lambda)表示具有最高权λλ的g\mathfrak{g}的不可约表示。我们对张量半群ΓN(g)≔{(λ1,λ2,μ)∈P+3|V(μ)⊂V(λ1)⊗V,{方程*},并且在张量锥Γ(g)\Gamma(\mathfrak{g})中,它生成:Γ(g)≔{(λ1,λ2,μ)∈P+,q3|∃N≥1v(Nμ)⊂V(Nλ1)⊗V(Nλ2)}。\开始{方程*}\Gamma(\mathfrak{g})≔\{(\lambda _1,\lambda _2,\mu)\在P_{+,{\mathbb{Q}}}}^3\,|\,\存在N\geq 1\quad V(N\mu)\subet V(N\lambda _1)\otimes V(N\ lambda _2)\}中。\end{方程*}这里,P+,Q P_{+,{\mathb
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the tensor semigroup of affine Kac-Moody lie algebras

The support of the tensor product decomposition of integrable irreducible highest weight representations of a symmetrizable Kac-Moody Lie algebra g \mathfrak {g} defines a semigroup of triples of weights. Namely, given λ \lambda in the set P + P_+ of dominant integral weights, V ( λ ) V(\lambda ) denotes the irreducible representation of g \mathfrak {g} with highest weight λ \lambda . We are interested in the tensor semigroup Γ N ( g ) { ( λ 1 , λ 2 , μ ) P + 3 | V ( μ ) V ( λ 1 ) V ( λ 2 ) } , \begin{equation*} \Gamma _{\mathbb {N}}(\mathfrak {g})≔\{(\lambda _1,\lambda _2,\mu )\in P_{+}^3\,|\, V(\mu )\subset V(\lambda _1)\otimes V(\lambda _2)\}, \end{equation*} and in the tensor cone Γ ( g ) \Gamma (\mathfrak {g}) it generates: Γ ( g ) { ( λ 1 , λ 2 , μ ) P + , Q 3 | N 1 V ( N μ ) V ( N λ 1 ) V ( N λ 2 ) } . \begin{equation*} \Gamma (\mathfrak {g})≔\{(\lambda _1,\lambda _2,\mu )\in P_{+,{\mathbb {Q}}}^3\,|\,\exists N\geq 1 \quad V(N\mu )\subset V(N\lambda _1)\otimes V(N\lambda _2)\}. \end{equation*} Here, P + , Q P_{+,{\mathb

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信