N. Ressayre
求助PDF
{"title":"仿射Kac-Moody李代数的张量半群","authors":"N. Ressayre","doi":"10.1090/JAMS/975","DOIUrl":null,"url":null,"abstract":"<p>The support of the tensor product decomposition of integrable irreducible highest weight representations of a symmetrizable Kac-Moody Lie algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> defines a semigroup of triples of weights. Namely, given <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P Subscript plus\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>P</mml:mi>\n <mml:mo>+</mml:mo>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">P_+</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of dominant integral weights, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V left-parenthesis lamda right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">V(\\lambda )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> denotes the irreducible representation of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with highest weight <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We are interested in the <italic>tensor semigroup</italic> <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript double-struck upper N Baseline left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus Superscript 3 Baseline vertical-bar upper V left-parenthesis mu right-parenthesis subset-of upper V left-parenthesis lamda 1 right-parenthesis circled-times upper V left-parenthesis lamda 2 right-parenthesis EndSet comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msubsup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>+</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msubsup>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Gamma _{\\mathbb {N}}(\\mathfrak {g})≔\\{(\\lambda _1,\\lambda _2,\\mu )\\in P_{+}^3\\,|\\, V(\\mu )\\subset V(\\lambda _1)\\otimes V(\\lambda _2)\\}, \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n and in the <italic>tensor cone</italic> <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma left-parenthesis German g right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma (\\mathfrak {g})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it generates: <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus comma double-struck upper Q Superscript 3 Baseline vertical-bar there-exists upper N greater-than-or-equal-to 1 upper V left-parenthesis upper N mu right-parenthesis subset-of upper V left-parenthesis upper N lamda 1 right-parenthesis circled-times upper V left-parenthesis upper N lamda 2 right-parenthesis EndSet period\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msubsup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>+</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msubsup>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi mathvariant=\"normal\">∃<!-- ∃ --></mml:mi>\n <mml:mi>N</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mspace width=\"1em\" />\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Gamma (\\mathfrak {g})≔\\{(\\lambda _1,\\lambda _2,\\mu )\\in P_{+,{\\mathbb {Q}}}^3\\,|\\,\\exists N\\geq 1 \\quad V(N\\mu )\\subset V(N\\lambda _1)\\otimes V(N\\lambda _2)\\}. \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n Here, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P Subscript plus comma double-struck upper Q\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>+</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">P_{+,{\\mathb","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the tensor semigroup of affine Kac-Moody lie algebras\",\"authors\":\"N. Ressayre\",\"doi\":\"10.1090/JAMS/975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The support of the tensor product decomposition of integrable irreducible highest weight representations of a symmetrizable Kac-Moody Lie algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> defines a semigroup of triples of weights. Namely, given <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in the set <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P Subscript plus\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>P</mml:mi>\\n <mml:mo>+</mml:mo>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">P_+</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of dominant integral weights, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V left-parenthesis lamda right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">V(\\\\lambda )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> denotes the irreducible representation of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with highest weight <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We are interested in the <italic>tensor semigroup</italic> <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript double-struck upper N Baseline left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus Superscript 3 Baseline vertical-bar upper V left-parenthesis mu right-parenthesis subset-of upper V left-parenthesis lamda 1 right-parenthesis circled-times upper V left-parenthesis lamda 2 right-parenthesis EndSet comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≔</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msubsup>\\n <mml:mi>P</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>+</mml:mo>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msubsup>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\Gamma _{\\\\mathbb {N}}(\\\\mathfrak {g})≔\\\\{(\\\\lambda _1,\\\\lambda _2,\\\\mu )\\\\in P_{+}^3\\\\,|\\\\, V(\\\\mu )\\\\subset V(\\\\lambda _1)\\\\otimes V(\\\\lambda _2)\\\\}, \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n and in the <italic>tensor cone</italic> <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma left-parenthesis German g right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma (\\\\mathfrak {g})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> it generates: <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus comma double-struck upper Q Superscript 3 Baseline vertical-bar there-exists upper N greater-than-or-equal-to 1 upper V left-parenthesis upper N mu right-parenthesis subset-of upper V left-parenthesis upper N lamda 1 right-parenthesis circled-times upper V left-parenthesis upper N lamda 2 right-parenthesis EndSet period\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≔</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msubsup>\\n <mml:mi>P</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>+</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msubsup>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mi mathvariant=\\\"normal\\\">∃<!-- ∃ --></mml:mi>\\n <mml:mi>N</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:mi>V</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mo>.</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\Gamma (\\\\mathfrak {g})≔\\\\{(\\\\lambda _1,\\\\lambda _2,\\\\mu )\\\\in P_{+,{\\\\mathbb {Q}}}^3\\\\,|\\\\,\\\\exists N\\\\geq 1 \\\\quad V(N\\\\mu )\\\\subset V(N\\\\lambda _1)\\\\otimes V(N\\\\lambda _2)\\\\}. \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n Here, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P Subscript plus comma double-struck upper Q\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>P</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>+</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">P_{+,{\\\\mathb\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/975\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/975","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
引用
批量引用