{"title":"高校计算机工作站设计中工作姿势的工效学评价","authors":"Nabila Chowdhury, F. Aghazadeh, Milad Amini","doi":"10.3233/OER-170252","DOIUrl":null,"url":null,"abstract":"BACKGROUND: There is an extensive body of research reviewing the ergonomics needs of industrial office workers. However, very few studies have considered evaluating the working postures of students or professors in universities who are exposed to prolonged sitting while working at a computer workstation. OBJECTIVE: The purpose of the study was threefold: (1) to determine the major ergonomic issues university employees encounter while working at computer workstations, (2) to compare the two ergonomic assessment tools (RULA and REBA) to see how similarly or differently they assess the risks present in the same working condition and (3) to develop a model that correlates working condition, work posture and computer workstation design with their negative effects on musculoskeletal system. METHODS: This research was constituted of a comprehensive survey (5 minutes) and a quantitative risk assessment session (20 minutes) conducted over 72 university personnel and their workstations in a university workplace. Along with a preassessment questionnaire; the Cornell Musculoskeletal Discomfort Questionnaire (CMDQ) and two ergonomic assessment tools namely Rapid Entire Body Assessment (REBA) and Rapid Upper Limb Assessment (RULA) were used to quantify the ergonomic risk factors. To evaluate the computer workstations “OSHA Computer Workstations eTool-Evaluation Checklist” was used. RESULTS: The upper limbs of computer workstation users seem to be more prone to Work-related Musculoskeletal Disorders (WMSD) and Repetitive Stress Injuries (RSI) symptoms. In 85.5% of cases, RULA scores were the same or more than that of REBA, which indicates work of office employees may cause a disorder more in the upper limbs than the lower limbs. CONCLUSIONS: Alignment of the monitor was found to be the most significant design parameter. Among different body parts, trunk was the most affected one, as a result of poor posture and/or workplace design followed by shoulder and upper arm, and forearm and wrist.","PeriodicalId":91780,"journal":{"name":"Occupational ergonomics : the journal of the International Society for Occupational Ergonomics and Safety","volume":"13 1","pages":"37-46"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/OER-170252","citationCount":"11","resultStr":"{\"title\":\"Ergonomic assessment of working postures for the design of university computer workstations\",\"authors\":\"Nabila Chowdhury, F. Aghazadeh, Milad Amini\",\"doi\":\"10.3233/OER-170252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: There is an extensive body of research reviewing the ergonomics needs of industrial office workers. However, very few studies have considered evaluating the working postures of students or professors in universities who are exposed to prolonged sitting while working at a computer workstation. OBJECTIVE: The purpose of the study was threefold: (1) to determine the major ergonomic issues university employees encounter while working at computer workstations, (2) to compare the two ergonomic assessment tools (RULA and REBA) to see how similarly or differently they assess the risks present in the same working condition and (3) to develop a model that correlates working condition, work posture and computer workstation design with their negative effects on musculoskeletal system. METHODS: This research was constituted of a comprehensive survey (5 minutes) and a quantitative risk assessment session (20 minutes) conducted over 72 university personnel and their workstations in a university workplace. Along with a preassessment questionnaire; the Cornell Musculoskeletal Discomfort Questionnaire (CMDQ) and two ergonomic assessment tools namely Rapid Entire Body Assessment (REBA) and Rapid Upper Limb Assessment (RULA) were used to quantify the ergonomic risk factors. To evaluate the computer workstations “OSHA Computer Workstations eTool-Evaluation Checklist” was used. RESULTS: The upper limbs of computer workstation users seem to be more prone to Work-related Musculoskeletal Disorders (WMSD) and Repetitive Stress Injuries (RSI) symptoms. In 85.5% of cases, RULA scores were the same or more than that of REBA, which indicates work of office employees may cause a disorder more in the upper limbs than the lower limbs. CONCLUSIONS: Alignment of the monitor was found to be the most significant design parameter. Among different body parts, trunk was the most affected one, as a result of poor posture and/or workplace design followed by shoulder and upper arm, and forearm and wrist.\",\"PeriodicalId\":91780,\"journal\":{\"name\":\"Occupational ergonomics : the journal of the International Society for Occupational Ergonomics and Safety\",\"volume\":\"13 1\",\"pages\":\"37-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/OER-170252\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Occupational ergonomics : the journal of the International Society for Occupational Ergonomics and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/OER-170252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Occupational ergonomics : the journal of the International Society for Occupational Ergonomics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/OER-170252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ergonomic assessment of working postures for the design of university computer workstations
BACKGROUND: There is an extensive body of research reviewing the ergonomics needs of industrial office workers. However, very few studies have considered evaluating the working postures of students or professors in universities who are exposed to prolonged sitting while working at a computer workstation. OBJECTIVE: The purpose of the study was threefold: (1) to determine the major ergonomic issues university employees encounter while working at computer workstations, (2) to compare the two ergonomic assessment tools (RULA and REBA) to see how similarly or differently they assess the risks present in the same working condition and (3) to develop a model that correlates working condition, work posture and computer workstation design with their negative effects on musculoskeletal system. METHODS: This research was constituted of a comprehensive survey (5 minutes) and a quantitative risk assessment session (20 minutes) conducted over 72 university personnel and their workstations in a university workplace. Along with a preassessment questionnaire; the Cornell Musculoskeletal Discomfort Questionnaire (CMDQ) and two ergonomic assessment tools namely Rapid Entire Body Assessment (REBA) and Rapid Upper Limb Assessment (RULA) were used to quantify the ergonomic risk factors. To evaluate the computer workstations “OSHA Computer Workstations eTool-Evaluation Checklist” was used. RESULTS: The upper limbs of computer workstation users seem to be more prone to Work-related Musculoskeletal Disorders (WMSD) and Repetitive Stress Injuries (RSI) symptoms. In 85.5% of cases, RULA scores were the same or more than that of REBA, which indicates work of office employees may cause a disorder more in the upper limbs than the lower limbs. CONCLUSIONS: Alignment of the monitor was found to be the most significant design parameter. Among different body parts, trunk was the most affected one, as a result of poor posture and/or workplace design followed by shoulder and upper arm, and forearm and wrist.