非线性Boltzmann方程的全局可解性

IF 0.7 Q2 MATHEMATICS
A.Sh. Akysh (Akishev)
{"title":"非线性Boltzmann方程的全局可解性","authors":"A.Sh. Akysh (Akishev)","doi":"10.31489/2022m3/4-16","DOIUrl":null,"url":null,"abstract":"In this paper, based on the splitting method scheme, the existence and uniqueness theorem on the whole time interval t ∈ [0, T), T ≤ ∞ for the full nonlinear Boltzmann equation in the nonequilibrium case is proved where the intermolecular interactions are hard-sphere molecule and central forces. Considering the existence of a bounded solution in the space C, the strict positivity of the solution to the full nonlinear Boltzmann equation is proved when the initial function is positive. On the basis of this some mathematical justification of the H−theorem of Boltzmann is shown.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global solvability of a nonlinear Boltzmann equation\",\"authors\":\"A.Sh. Akysh (Akishev)\",\"doi\":\"10.31489/2022m3/4-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on the splitting method scheme, the existence and uniqueness theorem on the whole time interval t ∈ [0, T), T ≤ ∞ for the full nonlinear Boltzmann equation in the nonequilibrium case is proved where the intermolecular interactions are hard-sphere molecule and central forces. Considering the existence of a bounded solution in the space C, the strict positivity of the solution to the full nonlinear Boltzmann equation is proved when the initial function is positive. On the basis of this some mathematical justification of the H−theorem of Boltzmann is shown.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m3/4-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m3/4-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于分裂方法格式,证明了非平衡情况下分子间相互作用为硬球分子和中心力的全非线性Boltzmann方程在整个时间区间t∈[0,t], t≤∞上的存在唯一性定理。考虑空间C中有界解的存在性,证明了当初始函数为正时全非线性Boltzmann方程解的严格正性。在此基础上,给出了玻尔兹曼H定理的一些数学证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global solvability of a nonlinear Boltzmann equation
In this paper, based on the splitting method scheme, the existence and uniqueness theorem on the whole time interval t ∈ [0, T), T ≤ ∞ for the full nonlinear Boltzmann equation in the nonequilibrium case is proved where the intermolecular interactions are hard-sphere molecule and central forces. Considering the existence of a bounded solution in the space C, the strict positivity of the solution to the full nonlinear Boltzmann equation is proved when the initial function is positive. On the basis of this some mathematical justification of the H−theorem of Boltzmann is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信