T. Novikova, Myeongseop Kim, Hee Ryung Lee, R. Ossikovski, Aude Malfait-Jobart, D. Lamarque
{"title":"胃组织活检的穆勒显微镜光学诊断及统计分析","authors":"T. Novikova, Myeongseop Kim, Hee Ryung Lee, R. Ossikovski, Aude Malfait-Jobart, D. Lamarque","doi":"10.1051/jeos/2022011","DOIUrl":null,"url":null,"abstract":"We investigate a possibility of producing the quantitative optical metrics to characterize the evolution of gastric tissue from healthy conditions via inflammation to cancer by using Mueller microscopy of gastric biopsies, regression model and statistical analysis of the predicted images. For this purpose the unstained sections of human gastric tissue biopsies at different pathological conditions were measured with the custom-built Mueller microscope. Polynomial regression model was built using the maps of transmitted intensity, retardance, dichroism and depolarization to generate the predicted images. The statistical analysis of predicted images of gastric tissue sections with multi-curve fit suggests that Mueller microscopy combined with data regression and statistical analysis is an effective approach for quantitative assessment of the degree of inflammation in gastric tissue biopsies with a high potential in clinical applications.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis\",\"authors\":\"T. Novikova, Myeongseop Kim, Hee Ryung Lee, R. Ossikovski, Aude Malfait-Jobart, D. Lamarque\",\"doi\":\"10.1051/jeos/2022011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a possibility of producing the quantitative optical metrics to characterize the evolution of gastric tissue from healthy conditions via inflammation to cancer by using Mueller microscopy of gastric biopsies, regression model and statistical analysis of the predicted images. For this purpose the unstained sections of human gastric tissue biopsies at different pathological conditions were measured with the custom-built Mueller microscope. Polynomial regression model was built using the maps of transmitted intensity, retardance, dichroism and depolarization to generate the predicted images. The statistical analysis of predicted images of gastric tissue sections with multi-curve fit suggests that Mueller microscopy combined with data regression and statistical analysis is an effective approach for quantitative assessment of the degree of inflammation in gastric tissue biopsies with a high potential in clinical applications.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2022011\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2022011","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis
We investigate a possibility of producing the quantitative optical metrics to characterize the evolution of gastric tissue from healthy conditions via inflammation to cancer by using Mueller microscopy of gastric biopsies, regression model and statistical analysis of the predicted images. For this purpose the unstained sections of human gastric tissue biopsies at different pathological conditions were measured with the custom-built Mueller microscope. Polynomial regression model was built using the maps of transmitted intensity, retardance, dichroism and depolarization to generate the predicted images. The statistical analysis of predicted images of gastric tissue sections with multi-curve fit suggests that Mueller microscopy combined with data regression and statistical analysis is an effective approach for quantitative assessment of the degree of inflammation in gastric tissue biopsies with a high potential in clinical applications.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.