非线性Schrödinger方程阈值解的Blow-up或Grow-up

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
S. Gustafson, Takahisa Inui
{"title":"非线性Schrödinger方程阈值解的Blow-up或Grow-up","authors":"S. Gustafson, Takahisa Inui","doi":"10.4310/dpde.2023.v20.n3.a3","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear Schr\\\"{o}dinger equation with $L^{2}$-supercritical and $H^{1}$-subcritical power type nonlinearity. Duyckaerts and Roudenko and Campos, Farah, and Roudenko studied the global dynamics of the solutions with same mass and energy as that of the ground state. In these papers, finite variance is assumed to show the finite time blow-up. In the present paper, we remove the finite-variance assumption and prove a blow-up or grow-up result.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Blow-up or Grow-up for the threshold solutions to the nonlinear Schrödinger equation\",\"authors\":\"S. Gustafson, Takahisa Inui\",\"doi\":\"10.4310/dpde.2023.v20.n3.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonlinear Schr\\\\\\\"{o}dinger equation with $L^{2}$-supercritical and $H^{1}$-subcritical power type nonlinearity. Duyckaerts and Roudenko and Campos, Farah, and Roudenko studied the global dynamics of the solutions with same mass and energy as that of the ground state. In these papers, finite variance is assumed to show the finite time blow-up. In the present paper, we remove the finite-variance assumption and prove a blow-up or grow-up result.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2023.v20.n3.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2023.v20.n3.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑了具有$L^{2}$-超临界和$H^{1}$-亚临界幂型非线性的非线性Schr\ {o}dinger方程。Duyckaerts和Roudenko以及Campos, Farah和Roudenko研究了与基态具有相同质量和能量的解的全局动力学。在这些论文中,假设有限方差来表示有限时间爆炸。在本文中,我们去掉了有限方差的假设,证明了一个膨胀或增长的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up or Grow-up for the threshold solutions to the nonlinear Schrödinger equation
We consider the nonlinear Schr\"{o}dinger equation with $L^{2}$-supercritical and $H^{1}$-subcritical power type nonlinearity. Duyckaerts and Roudenko and Campos, Farah, and Roudenko studied the global dynamics of the solutions with same mass and energy as that of the ground state. In these papers, finite variance is assumed to show the finite time blow-up. In the present paper, we remove the finite-variance assumption and prove a blow-up or grow-up result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信