利用不适当Gompertz分布估计中间滤波存在下的累积关联函数

IF 1.6 Q1 STATISTICS & PROBABILITY
H. Rehman, N. Chandra
{"title":"利用不适当Gompertz分布估计中间滤波存在下的累积关联函数","authors":"H. Rehman, N. Chandra","doi":"10.6092/ISSN.1973-2201/12309","DOIUrl":null,"url":null,"abstract":"In this paper we deal with the modelling of cumulative incidence function using improper Gompertz distribution based on middle censored competing risks survival data. Together with the unknown parameters, cumulative incidence function also estimated. In classical set up, we derive the point estimates using maximum likelihood estimator and midpoint approximation methods. The asymptotic confidence interval are obtained based on asymptotic normality properties of maximum likelihood estimator. We also derive the Bayes estimates with associated credible intervals based on informative and non-informative types of priors under two loss functions such as squared error and LINEX loss functions. A simulation study is conducted for comprehensive comparison between various estimators proposed in this paper. A real life data set is also used for illustration.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"81 1","pages":"163-182"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution\",\"authors\":\"H. Rehman, N. Chandra\",\"doi\":\"10.6092/ISSN.1973-2201/12309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we deal with the modelling of cumulative incidence function using improper Gompertz distribution based on middle censored competing risks survival data. Together with the unknown parameters, cumulative incidence function also estimated. In classical set up, we derive the point estimates using maximum likelihood estimator and midpoint approximation methods. The asymptotic confidence interval are obtained based on asymptotic normality properties of maximum likelihood estimator. We also derive the Bayes estimates with associated credible intervals based on informative and non-informative types of priors under two loss functions such as squared error and LINEX loss functions. A simulation study is conducted for comprehensive comparison between various estimators proposed in this paper. A real life data set is also used for illustration.\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":\"81 1\",\"pages\":\"163-182\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/12309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/12309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了基于中截尾竞争风险生存数据的不正当Gompertz分布累积关联函数的建模问题。结合未知参数,估计了累积关联函数。在经典设置中,我们使用极大似然估计和中点逼近方法推导点估计。根据极大似然估计的渐近正态性,得到渐近置信区间。我们还在平方误差和LINEX损失函数两种损失函数下,基于信息和非信息类型的先验,推导出具有相关可信区间的贝叶斯估计。通过仿真研究,对本文提出的各种估计方法进行了综合比较。一个真实的数据集也被用于说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution
In this paper we deal with the modelling of cumulative incidence function using improper Gompertz distribution based on middle censored competing risks survival data. Together with the unknown parameters, cumulative incidence function also estimated. In classical set up, we derive the point estimates using maximum likelihood estimator and midpoint approximation methods. The asymptotic confidence interval are obtained based on asymptotic normality properties of maximum likelihood estimator. We also derive the Bayes estimates with associated credible intervals based on informative and non-informative types of priors under two loss functions such as squared error and LINEX loss functions. A simulation study is conducted for comprehensive comparison between various estimators proposed in this paper. A real life data set is also used for illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信