{"title":"非均匀网格上三次b样条配点法求解非线性抛物型偏微分方程","authors":"Swarn Singh, S. Bhatt, Suruchi Singh","doi":"10.22034/CMDE.2020.39472.1726","DOIUrl":null,"url":null,"abstract":"In this paper, an approximate solution of non-linear parabolic partial differential equation is obtained for a non-uniform mesh. The scheme for partial differential equation subject to Neumann boundary is based on cubic B-spline collocation method. Modified cubic B-splines are proposed over non-uniform mesh to deal with the Dirichlet boundary conditions. This scheme produces a system of first order ordinary differential equations. This system is solved by Crank Nicholson method. The stability is also discussed using Von Neumann stability analysis. The accuracy and efficiency of the scheme is shown by numerical experiments. We have compared the approximate solutions with that in the literature.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cubic B-spline collocation method on non-uniform mesh for solving non-linear parabolic partial differential equation\",\"authors\":\"Swarn Singh, S. Bhatt, Suruchi Singh\",\"doi\":\"10.22034/CMDE.2020.39472.1726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approximate solution of non-linear parabolic partial differential equation is obtained for a non-uniform mesh. The scheme for partial differential equation subject to Neumann boundary is based on cubic B-spline collocation method. Modified cubic B-splines are proposed over non-uniform mesh to deal with the Dirichlet boundary conditions. This scheme produces a system of first order ordinary differential equations. This system is solved by Crank Nicholson method. The stability is also discussed using Von Neumann stability analysis. The accuracy and efficiency of the scheme is shown by numerical experiments. We have compared the approximate solutions with that in the literature.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.39472.1726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.39472.1726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Cubic B-spline collocation method on non-uniform mesh for solving non-linear parabolic partial differential equation
In this paper, an approximate solution of non-linear parabolic partial differential equation is obtained for a non-uniform mesh. The scheme for partial differential equation subject to Neumann boundary is based on cubic B-spline collocation method. Modified cubic B-splines are proposed over non-uniform mesh to deal with the Dirichlet boundary conditions. This scheme produces a system of first order ordinary differential equations. This system is solved by Crank Nicholson method. The stability is also discussed using Von Neumann stability analysis. The accuracy and efficiency of the scheme is shown by numerical experiments. We have compared the approximate solutions with that in the literature.