非均匀网格上三次b样条配点法求解非线性抛物型偏微分方程

IF 1.1 Q2 MATHEMATICS, APPLIED
Swarn Singh, S. Bhatt, Suruchi Singh
{"title":"非均匀网格上三次b样条配点法求解非线性抛物型偏微分方程","authors":"Swarn Singh, S. Bhatt, Suruchi Singh","doi":"10.22034/CMDE.2020.39472.1726","DOIUrl":null,"url":null,"abstract":"In this paper, an approximate solution of non-linear parabolic partial differential equation is obtained for a non-uniform mesh. The scheme for partial differential equation subject to Neumann boundary is based on cubic B-spline collocation method. Modified cubic B-splines are proposed over non-uniform mesh to deal with the Dirichlet boundary conditions. This scheme produces a system of first order ordinary differential equations. This system is solved by Crank Nicholson method. The stability is also discussed using Von Neumann stability analysis. The accuracy and efficiency of the scheme is shown by numerical experiments. We have compared the approximate solutions with that in the literature.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cubic B-spline collocation method on non-uniform mesh for solving non-linear parabolic partial differential equation\",\"authors\":\"Swarn Singh, S. Bhatt, Suruchi Singh\",\"doi\":\"10.22034/CMDE.2020.39472.1726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approximate solution of non-linear parabolic partial differential equation is obtained for a non-uniform mesh. The scheme for partial differential equation subject to Neumann boundary is based on cubic B-spline collocation method. Modified cubic B-splines are proposed over non-uniform mesh to deal with the Dirichlet boundary conditions. This scheme produces a system of first order ordinary differential equations. This system is solved by Crank Nicholson method. The stability is also discussed using Von Neumann stability analysis. The accuracy and efficiency of the scheme is shown by numerical experiments. We have compared the approximate solutions with that in the literature.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.39472.1726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.39472.1726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一类非均匀网格的非线性抛物型偏微分方程的近似解。基于三次b样条配点法的Neumann边界偏微分方程格式。提出了在非均匀网格上处理Dirichlet边界条件的改进三次b样条。这个格式产生一个一阶常微分方程组。用曲克尼克尔森法求解该系统。利用冯·诺依曼稳定性分析对其稳定性进行了讨论。数值实验证明了该方案的准确性和有效性。我们将近似解与文献中的近似解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cubic B-spline collocation method on non-uniform mesh for solving non-linear parabolic partial differential equation
In this paper, an approximate solution of non-linear parabolic partial differential equation is obtained for a non-uniform mesh. The scheme for partial differential equation subject to Neumann boundary is based on cubic B-spline collocation method. Modified cubic B-splines are proposed over non-uniform mesh to deal with the Dirichlet boundary conditions. This scheme produces a system of first order ordinary differential equations. This system is solved by Crank Nicholson method. The stability is also discussed using Von Neumann stability analysis. The accuracy and efficiency of the scheme is shown by numerical experiments. We have compared the approximate solutions with that in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信