M. Zare, A. Semati, A. Mirahmadizadeh, Abdulrasool Hemmati, M. Ebrahimi
{"title":"伊朗法尔斯省新冠肺炎的空间流行病学和气象危险因素。","authors":"M. Zare, A. Semati, A. Mirahmadizadeh, Abdulrasool Hemmati, M. Ebrahimi","doi":"10.4081/gh.2022.1065","DOIUrl":null,"url":null,"abstract":"This study aimed at detecting space-time clusters of COVID-19 cases in Fars Province, Iran and at investigating their potential association with meteorological factors, such as temperature, precipitation and wind velocity. Time-series data including 53,554 infected people recorded in 26 cities from 18 February to 30 September 2020 together with 5876 meteorological records were subjected to the analysis. Applying a significance level of P<0.05, the analysis of space-time distribution of COVID-19 resulted in nine significant outbreaks within the study period. The most likely cluster occurred from 27 March to 13 July 2020 and contained 11% of the total cases with eight additional, secondary clusters. We found that the COVID-19 incidence rate was affected by high temperature (OR=1.64; 95% CI: 1.44-1.87), while precipitation and wind velocity had less effect (OR=0.84; 95% CI: 0.75-0.89 and OR=0.27; 95% CI: 0.14-0.51), respectively.","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"17 s1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial epidemiology and meteorological risk factors of COVID-19 in Fars Province, Iran.\",\"authors\":\"M. Zare, A. Semati, A. Mirahmadizadeh, Abdulrasool Hemmati, M. Ebrahimi\",\"doi\":\"10.4081/gh.2022.1065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed at detecting space-time clusters of COVID-19 cases in Fars Province, Iran and at investigating their potential association with meteorological factors, such as temperature, precipitation and wind velocity. Time-series data including 53,554 infected people recorded in 26 cities from 18 February to 30 September 2020 together with 5876 meteorological records were subjected to the analysis. Applying a significance level of P<0.05, the analysis of space-time distribution of COVID-19 resulted in nine significant outbreaks within the study period. The most likely cluster occurred from 27 March to 13 July 2020 and contained 11% of the total cases with eight additional, secondary clusters. We found that the COVID-19 incidence rate was affected by high temperature (OR=1.64; 95% CI: 1.44-1.87), while precipitation and wind velocity had less effect (OR=0.84; 95% CI: 0.75-0.89 and OR=0.27; 95% CI: 0.14-0.51), respectively.\",\"PeriodicalId\":56260,\"journal\":{\"name\":\"Geospatial Health\",\"volume\":\"17 s1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geospatial Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4081/gh.2022.1065\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geospatial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4081/gh.2022.1065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Spatial epidemiology and meteorological risk factors of COVID-19 in Fars Province, Iran.
This study aimed at detecting space-time clusters of COVID-19 cases in Fars Province, Iran and at investigating their potential association with meteorological factors, such as temperature, precipitation and wind velocity. Time-series data including 53,554 infected people recorded in 26 cities from 18 February to 30 September 2020 together with 5876 meteorological records were subjected to the analysis. Applying a significance level of P<0.05, the analysis of space-time distribution of COVID-19 resulted in nine significant outbreaks within the study period. The most likely cluster occurred from 27 March to 13 July 2020 and contained 11% of the total cases with eight additional, secondary clusters. We found that the COVID-19 incidence rate was affected by high temperature (OR=1.64; 95% CI: 1.44-1.87), while precipitation and wind velocity had less effect (OR=0.84; 95% CI: 0.75-0.89 and OR=0.27; 95% CI: 0.14-0.51), respectively.
期刊介绍:
The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.