Coyote优化算法的广义网络模型

Q4 Agricultural and Biological Sciences
O. Roeva, Dafina Zoteva, P. Vassilev
{"title":"Coyote优化算法的广义网络模型","authors":"O. Roeva, Dafina Zoteva, P. Vassilev","doi":"10.7546/ijba.2022.26.4.000787","DOIUrl":null,"url":null,"abstract":"In the presented paper, the functioning of the coyote optimization algorithm (COA) is described using the apparatus of generalized nets (GNs). The COA is a population-based metaheuristic for optimization inspired by the Canis latrans species. Based on a Universal GN-model of population-based metaheuristics, а GN-model of COA is constructed by setting different characteristic functions of the GN-tokens. The presented GN-model successfully describes the considered metaheuristic algorithm, conducting basic steps and performing an optimal search.","PeriodicalId":38867,"journal":{"name":"International Journal Bioautomation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Net Model of Coyote Optimization Algorithm\",\"authors\":\"O. Roeva, Dafina Zoteva, P. Vassilev\",\"doi\":\"10.7546/ijba.2022.26.4.000787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the presented paper, the functioning of the coyote optimization algorithm (COA) is described using the apparatus of generalized nets (GNs). The COA is a population-based metaheuristic for optimization inspired by the Canis latrans species. Based on a Universal GN-model of population-based metaheuristics, а GN-model of COA is constructed by setting different characteristic functions of the GN-tokens. The presented GN-model successfully describes the considered metaheuristic algorithm, conducting basic steps and performing an optimal search.\",\"PeriodicalId\":38867,\"journal\":{\"name\":\"International Journal Bioautomation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal Bioautomation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/ijba.2022.26.4.000787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Bioautomation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/ijba.2022.26.4.000787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文用广义网络(GNs)的方法描述了COA算法的功能。COA是一种基于种群的优化元启发式算法,其灵感来自犬类。在基于种群的元启发式通用gn -模型的基础上,通过设置gn -令牌的不同特征函数,构建了COA的gn -模型。提出的gn模型成功地描述了所考虑的元启发式算法,执行基本步骤并执行最优搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Net Model of Coyote Optimization Algorithm
In the presented paper, the functioning of the coyote optimization algorithm (COA) is described using the apparatus of generalized nets (GNs). The COA is a population-based metaheuristic for optimization inspired by the Canis latrans species. Based on a Universal GN-model of population-based metaheuristics, а GN-model of COA is constructed by setting different characteristic functions of the GN-tokens. The presented GN-model successfully describes the considered metaheuristic algorithm, conducting basic steps and performing an optimal search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal Bioautomation
International Journal Bioautomation Agricultural and Biological Sciences-Food Science
CiteScore
1.10
自引率
0.00%
发文量
22
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信